Experiment set6IT056 for Pseudomonas putida KT2440

Compare to:

Cholinium lysinate carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Cholinium lysinate (0.5 vol%)
Culturing: Putida_ML5, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 6.1 generations
By: Mitch on 12/8/17
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 16 genes in this experiment

For carbon source Cholinium lysinate in Pseudomonas putida KT2440

For carbon source Cholinium lysinate across organisms

SEED Subsystems

Subsystem #Specific
Choline and Betaine Uptake and Betaine Biosynthesis 7
Lysine degradation 2
Acetyl-CoA fermentation to Butyrate 1
Folate Biosynthesis 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Glycine Biosynthesis 1
Glycine and Serine Utilization 1
LMPTP YwlE cluster 1
Photorespiration (oxidative C2 cycle) 1
Pyrroloquinoline Quinone biosynthesis 1
Serine-glyoxylate cycle 1
Serine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 2
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 2
choline degradation I 2 2 2
glycine biosynthesis I 1 1 1
acetaldehyde biosynthesis I 1 1 1
choline-O-sulfate degradation 3 3 2
ethanol degradation II 3 3 2
glycine betaine degradation III 7 7 4
phytol degradation 4 3 2
pyruvate fermentation to ethanol II 2 1 1
ethanol degradation I 2 1 1
β-alanine biosynthesis IV 2 1 1
β-alanine biosynthesis I 2 1 1
glycine betaine degradation I 8 6 3
dTMP de novo biosynthesis (mitochondrial) 3 3 1
ethanol degradation IV 3 3 1
formaldehyde oxidation II (glutathione-dependent) 3 3 1
glycine degradation 3 3 1
hypotaurine degradation 3 2 1
glycine betaine biosynthesis III (plants) 3 2 1
L-leucine degradation III 3 2 1
ethanol degradation III 3 2 1
L-valine degradation II 3 2 1
L-isoleucine degradation II 3 2 1
histamine degradation 3 1 1
pyruvate fermentation to ethanol I 3 1 1
L-methionine degradation III 3 1 1
dimethylsulfoniopropanoate biosynthesis I (Wollastonia) 3 1 1
pyruvate fermentation to ethanol III 3 1 1
noradrenaline and adrenaline degradation 13 8 4
serotonin degradation 7 4 2
superpathway of L-serine and glycine biosynthesis I 4 4 1
salidroside biosynthesis 4 3 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 3 1
putrescine degradation III 4 3 1
creatinine degradation I 4 2 1
fatty acid α-oxidation I (plants) 4 2 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
choline degradation IV 4 2 1
dimethylsulfoniopropanoate biosynthesis II (Spartina) 4 1 1
glycine betaine degradation II (mammalian) 4 1 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
octane oxidation 5 4 1
ethanolamine utilization 5 4 1
folate polyglutamylation 5 4 1
mitochondrial NADPH production (yeast) 5 4 1
creatinine degradation II 5 3 1
phenylethanol biosynthesis 5 3 1
protein S-nitrosylation and denitrosylation 5 3 1
acetylene degradation (anaerobic) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
(S)-propane-1,2-diol degradation 5 2 1
dopamine degradation 5 2 1
folate transformations II (plants) 11 10 2
peptido-conjugates in tissue regeneration biosynthesis 17 6 3
3-methyl-branched fatty acid α-oxidation 6 3 1
leukotriene biosynthesis 6 2 1
alkane oxidation 6 1 1
3-methylbutanol biosynthesis (engineered) 7 6 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
aromatic biogenic amine degradation (bacteria) 8 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
L-lysine degradation V 9 9 1
folate transformations III (E. coli) 9 9 1
photorespiration III 9 6 1
photorespiration I 9 6 1
L-lysine degradation II (L-pipecolate pathway) 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
gliotoxin biosynthesis 9 2 1
photorespiration II 10 7 1
superpathway of C1 compounds oxidation to CO2 12 5 1
folate transformations I 13 9 1
formaldehyde assimilation I (serine pathway) 13 7 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
L-tryptophan degradation V (side chain pathway) 13 1 1
mixed acid fermentation 16 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
heterolactic fermentation 18 12 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
purine nucleobases degradation II (anaerobic) 24 16 1
superpathway of L-lysine degradation 43 23 1
arachidonate metabolites biosynthesis 74 3 1