Experiment set67S67 for Escherichia coli BW25113

Compare to:

Guanosine 0.35306 mM carbon source

Group: carbon source
Media: Chakraborty_Basal + Guanosine (0.35306 mM), pH=7
Culturing: Keio_ML9a, tube, Aerobic, at 29 (C), shaken=200 rpm
By: Bri Finley on 9/16/24
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 0.3792 g/L Sodium phosphate monobasic, 0.9713 g/L Disodium phosphate, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 22 genes in this experiment

For carbon source Guanosine in Escherichia coli BW25113

For carbon source Guanosine across organisms

SEED Subsystems

Subsystem #Specific
Curli production 6
Deoxyribose and Deoxynucleoside Catabolism 4
Pentose phosphate pathway 2
Adenosyl nucleosidases 1
Calvin-Benson cycle 1
CytR regulation 1
D-ribose utilization 1
Folate Biosynthesis 1
Fructose utilization 1
Multidrug Resistance Efflux Pumps 1
Polyamine Metabolism 1
Purine conversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
purine ribonucleosides degradation 6 6 5
purine deoxyribonucleosides degradation I 4 4 3
superpathway of purine deoxyribonucleosides degradation 7 7 5
purine deoxyribonucleosides degradation II 3 3 2
pentose phosphate pathway (partial) 3 3 2
2-deoxy-α-D-ribose 1-phosphate degradation 3 3 2
2-deoxy-D-ribose degradation I 3 3 2
pentose phosphate pathway (non-oxidative branch) I 5 5 3
superpathway of pyrimidine deoxyribonucleosides degradation 6 6 3
adenine and adenosine salvage III 4 4 2
xanthine and xanthosine salvage 2 2 1
guanine and guanosine salvage I 2 2 1
ribose phosphorylation 2 2 1
adenine and adenosine salvage I 2 2 1
pentose phosphate pathway 8 8 3
adenine and adenosine salvage V 3 3 1
superpathway of guanine and guanosine salvage 3 3 1
pyrimidine deoxyribonucleosides degradation 3 3 1
pentose phosphate pathway (non-oxidative branch) II 6 5 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 7 3
Rubisco shunt 10 9 3
purine nucleotides degradation II (aerobic) 11 11 3
guanosine nucleotides degradation III 4 4 1
inosine 5'-phosphate degradation 4 4 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 3
adenosine nucleotides degradation II 5 5 1
nucleoside and nucleotide degradation (archaea) 10 4 2
superpathway of glucose and xylose degradation 17 17 3
nucleoside and nucleotide degradation (halobacteria) 6 3 1
fluoroacetate and fluorothreonine biosynthesis 6 1 1
Calvin-Benson-Bassham cycle 13 10 2
superpathway of purine nucleotide salvage 14 13 2
ureide biosynthesis 7 5 1
Bifidobacterium shunt 15 13 2
oxygenic photosynthesis 17 11 2
ethene biosynthesis V (engineered) 25 18 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
1-butanol autotrophic biosynthesis (engineered) 27 19 2
salinosporamide A biosynthesis 15 3 1
arsenic detoxification (mammals) 17 8 1