Experiment set5S696 for Mucilaginibacter yixingensis YX-36 DSM 26809

Compare to:

polygalacturonic acid carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + polygalacturonic acid (5 mg/ml)
Culturing: Mucilaginibacter_YX36_ML5a, tube, Aerobic, at 30 (C), shaken=200 rpm
By: Marta on 6/27/25
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 67 genes in this experiment

For carbon source polygalacturonic acid in Mucilaginibacter yixingensis YX-36 DSM 26809

For carbon source polygalacturonic acid across organisms

SEED Subsystems

Subsystem #Specific
D-Galacturonate and D-Glucuronate Utilization 3
Iron acquisition in Vibrio 2
Methionine Biosynthesis 2
Methionine Degradation 2
Ton and Tol transport systems 2
Acetyl-CoA fermentation to Butyrate 1
Alginate metabolism 1
Auxin degradation 1
Bacterial Chemotaxis 1
Cysteine Biosynthesis 1
DNA repair, bacterial MutL-MutS system 1
Fatty Acid Biosynthesis FASII 1
Glycine and Serine Utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
Molybdenum cofactor biosynthesis 1
Multidrug Resistance Efflux Pumps 1
Nitrate and nitrite ammonification 1
Oxidative stress 1
Phosphate metabolism 1
Photorespiration (oxidative C2 cycle) 1
Polyhydroxybutyrate metabolism 1
Predicted carbohydrate hydrolases 1
Threonine and Homoserine Biosynthesis 1
Valine degradation 1
ZZ gjo need homes 1
cAMP signaling in bacteria 1
mycolic acid synthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-cysteine degradation II 3 3 3
benzoyl-CoA biosynthesis 3 3 3
betanidin degradation 1 1 1
long-chain fatty acid activation 1 1 1
L-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
D-serine degradation 3 2 2
L-methionine degradation II 3 2 2
fatty acid β-oxidation II (plant peroxisome) 5 3 3
oleate β-oxidation 35 23 20
2-methyl-branched fatty acid β-oxidation 14 8 8
valproate β-oxidation 9 5 5
superoxide radicals degradation 2 2 1
isoniazid activation 2 2 1
L-threonine biosynthesis 2 2 1
L-cysteine biosynthesis III (from L-homocysteine) 2 2 1
L-methionine biosynthesis II 6 5 3
homocysteine and cysteine interconversion 4 3 2
L-isoleucine degradation I 6 4 3
fatty acid salvage 6 4 3
propanoate fermentation to 2-methylbutanoate 6 3 3
linoleate biosynthesis II (animals) 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
baicalein degradation (hydrogen peroxide detoxification) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 5
fatty acid β-oxidation I (generic) 7 3 3
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 3
D-galacturonate degradation I 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
adipate degradation 5 3 2
adipate biosynthesis 5 3 2
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 2 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
ketolysis 3 3 1
ethanol degradation IV 3 3 1
superpathway of L-cysteine biosynthesis (fungi) 6 5 2
stearate biosynthesis II (bacteria and plants) 6 5 2
stearate biosynthesis IV 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
oleate biosynthesis I (plants) 3 2 1
L-threonine degradation I 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
3-methyl-branched fatty acid α-oxidation 6 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 3
6-gingerol analog biosynthesis (engineered) 6 2 2
alkane biosynthesis II 3 1 1
polyhydroxybutanoate biosynthesis 3 1 1
3-phenylpropanoate degradation 10 3 3
palmitate biosynthesis II (type II fatty acid synthase) 31 29 9
L-isoleucine biosynthesis I (from threonine) 7 7 2
glycine betaine degradation III 7 4 2
pyruvate fermentation to butanoate 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
superpathway of fatty acid biosynthesis II (plant) 43 39 12
palmitate biosynthesis III 29 28 8
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 4
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 12 3
gondoate biosynthesis (anaerobic) 4 4 1
reactive oxygen species degradation 4 4 1
luteolin triglucuronide degradation 4 3 1
phytol degradation 4 3 1
glycine betaine degradation I 8 4 2
pyruvate fermentation to butanol I 8 4 2
L-mimosine degradation 8 4 2
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
glutathione-mediated detoxification I 8 3 2
2-methylpropene degradation 8 2 2
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
xanthommatin biosynthesis 4 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 48 13
tetradecanoate biosynthesis (mitochondria) 25 23 6
superpathway of L-isoleucine biosynthesis I 13 13 3
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
phenylacetate degradation I (aerobic) 9 3 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 2
sporopollenin precursors biosynthesis 18 4 4
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of glyoxylate cycle and fatty acid degradation 14 8 3
superpathway of hexuronide and hexuronate degradation 10 10 2
fatty acid elongation -- saturated 5 5 1
superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) 10 9 2
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 17 4
8-amino-7-oxononanoate biosynthesis IV 5 4 1
superpathway of L-cysteine biosynthesis (mammalian) 5 4 1
cis-vaccenate biosynthesis 5 4 1
L-methionine biosynthesis I 5 3 1
ketogenesis 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
androstenedione degradation I (aerobic) 25 6 5
methyl tert-butyl ether degradation 10 2 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
pyruvate fermentation to acetone 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
fatty acid β-oxidation IV (unsaturated, even number) 5 1 1
8-amino-7-oxononanoate biosynthesis I 11 9 2
superpathway of phenylethylamine degradation 11 3 2
superpathway of testosterone and androsterone degradation 28 6 5
anteiso-branched-chain fatty acid biosynthesis 34 30 6
even iso-branched-chain fatty acid biosynthesis 34 30 6
odd iso-branched-chain fatty acid biosynthesis 34 30 6
superpathway of L-threonine biosynthesis 6 6 1
(5Z)-dodecenoate biosynthesis I 6 5 1
(5Z)-dodecenoate biosynthesis II 6 4 1
hydrogen sulfide biosynthesis II (mammalian) 6 4 1
petroselinate biosynthesis 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
4-ethylphenol degradation (anaerobic) 6 1 1
stearate biosynthesis I (animals) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 7
androstenedione degradation II (anaerobic) 27 4 4
streptorubin B biosynthesis 34 20 5
L-cysteine biosynthesis VI (reverse transsulfuration) 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
ceramide degradation by α-oxidation 7 2 1
hypoglycin biosynthesis 14 3 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway II (haloarchaea) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 3 3
biotin biosynthesis I 15 13 2
L-tryptophan degradation III (eukaryotic) 15 5 2
superpathway of fatty acid biosynthesis I (E. coli) 16 14 2
superpathway of L-homoserine and L-methionine biosynthesis 8 6 1
glycerol degradation to butanol 16 10 2
L-valine degradation I 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-allylmalonyl-CoA biosynthesis 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
sesamin biosynthesis 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
2-deoxy-D-ribose degradation II 8 1 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
platensimycin biosynthesis 26 6 3
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 14 2
superpathway of S-adenosyl-L-methionine biosynthesis 9 7 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
superpathway of L-threonine metabolism 18 11 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
toluene degradation VI (anaerobic) 18 3 2
4-oxopentanoate degradation 9 1 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
suberin monomers biosynthesis 20 2 2
justicidin B biosynthesis 10 1 1
matairesinol biosynthesis 10 1 1
L-lysine fermentation to acetate and butanoate 10 1 1
ethylmalonyl-CoA pathway 11 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 2
purine nucleobases degradation II (anaerobic) 24 10 2
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
superpathway of cholesterol degradation III (oxidase) 49 4 4
aspartate superpathway 25 21 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 16 2
1-butanol autotrophic biosynthesis (engineered) 27 18 2
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 13 2
superpathway of L-methionine salvage and degradation 16 9 1
cutin biosynthesis 16 1 1
sitosterol degradation to androstenedione 18 1 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of cholesterol biosynthesis 38 3 1
mycolate biosynthesis 205 18 5
superpathway of L-lysine degradation 43 6 1
superpathway of mycolate biosynthesis 239 19 5
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 19 1