Experiment set4S47 for Pseudomonas sp. RS175

Compare to:

L-Isoleucine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + L-Isoleucine (10 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep well, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 31-January-23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 7 genes in this experiment

For carbon source L-Isoleucine in Pseudomonas sp. RS175

For carbon source L-Isoleucine across organisms

SEED Subsystems

Subsystem #Specific
Isoleucine degradation 2
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Biotin biosynthesis 1
Butanol Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Polyhydroxybutyrate metabolism 1
Serine-glyoxylate cycle 1
Threonine and Homoserine Biosynthesis 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate degradation I 1 1 1
L-aspartate biosynthesis 1 1 1
acetate conversion to acetyl-CoA 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
acetate and ATP formation from acetyl-CoA III 1 1 1
L-glutamate degradation II 2 2 1
phosphatidylserine and phosphatidylethanolamine biosynthesis I 2 2 1
malate/L-aspartate shuttle pathway 2 1 1
L-tyrosine degradation II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
atromentin biosynthesis 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
benzoyl-CoA biosynthesis 3 3 1
L-phenylalanine biosynthesis I 3 3 1
ketolysis 3 3 1
ethanol degradation IV 3 3 1
superpathway of acetate utilization and formation 3 3 1
L-tyrosine biosynthesis I 3 3 1
ethanol degradation II 3 3 1
pyruvate fermentation to butanol II (engineered) 6 4 2
L-phenylalanine degradation II (anaerobic) 3 2 1
ethanol degradation III 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
L-isoleucine biosynthesis V 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
sulfolactate degradation III 3 2 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
(R)-cysteate degradation 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
pyruvate fermentation to hexanol (engineered) 11 7 3
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
L-phenylalanine degradation III 4 2 1
chitin deacetylation 4 2 1
L-tyrosine degradation III 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
oleate β-oxidation 35 30 8
valproate β-oxidation 9 6 2
2-methyl-branched fatty acid β-oxidation 14 10 3
L-tyrosine degradation I 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
trans-4-hydroxy-L-proline degradation I 5 3 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
superpathway of plastoquinol biosynthesis 5 2 1
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
ethylbenzene degradation (anaerobic) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
pyruvate fermentation to acetone 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
superpathway of L-threonine biosynthesis 6 6 1
fatty acid salvage 6 6 1
TCA cycle VIII (Chlamydia) 6 4 1
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
superpathway of sulfolactate degradation 6 3 1
superpathway of bitter acids biosynthesis 18 3 3
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
colupulone and cohumulone biosynthesis 6 1 1
adlupulone and adhumulone biosynthesis 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
coenzyme M biosynthesis II 6 1 1
lupulone and humulone biosynthesis 6 1 1
jasmonic acid biosynthesis 19 4 3
fatty acid β-oxidation I (generic) 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 2
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
pyruvate fermentation to butanoate 7 3 1
acetyl-CoA fermentation to butanoate 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of aromatic amino acid biosynthesis 18 18 2
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
cis-geranyl-CoA degradation 9 3 1
4-oxopentanoate degradation 9 1 1
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 3 1
rosmarinic acid biosynthesis I 10 2 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
(S)-reticuline biosynthesis I 11 1 1
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
superpathway of phospholipid biosynthesis III (E. coli) 12 11 1
indole-3-acetate biosynthesis II 12 4 1
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of cardiolipin biosynthesis (bacteria) 13 10 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 20 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
superpathway of rosmarinic acid biosynthesis 14 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of anaerobic energy metabolism (invertebrates) 17 8 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 3 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
aspartate superpathway 25 22 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 2
superpathway of phospholipid biosynthesis II (plants) 28 10 1
superpathway of chorismate metabolism 59 43 2
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 18 1