Experiment set4S45 for Pseudomonas sp. RS175

Compare to:

L-Valine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + L-Valine (10 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep well, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 31-January-23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 5 genes in this experiment

For carbon source L-Valine in Pseudomonas sp. RS175

For carbon source L-Valine across organisms

SEED Subsystems

Subsystem #Specific
Isobutyryl-CoA to Propionyl-CoA Module 3
Valine degradation 3
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Butanol Biosynthesis 1
Flavodoxin 1
Isoleucine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
β-alanine degradation II 2 2 1
β-alanine degradation I 2 1 1
propanoyl-CoA degradation II 5 3 2
benzoyl-CoA biosynthesis 3 3 1
L-valine degradation I 8 5 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
acrylate degradation I 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
β-alanine biosynthesis II 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
myo-inositol degradation I 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
2,4-dinitrotoluene degradation 7 1 1
valproate β-oxidation 9 6 1
phenylacetate degradation I (aerobic) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
myo-, chiro- and scyllo-inositol degradation 10 6 1
3-phenylpropanoate degradation 10 3 1
pyruvate fermentation to hexanol (engineered) 11 7 1
superpathway of phenylethylamine degradation 11 6 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 30 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 20 1