Experiment set4S44 for Pseudomonas sp. RS175

Compare to:

L-Valine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + L-Valine (10 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep well, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 31-January-23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 12 genes in this experiment

For carbon source L-Valine in Pseudomonas sp. RS175

For carbon source L-Valine across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 3
Isobutyryl-CoA to Propionyl-CoA Module 3
Valine degradation 3
Acetyl-CoA fermentation to Butyrate 1
Anaerobic respiratory reductases 1
Butanol Biosynthesis 1
Ethanolamine utilization 1
Fermentations: Lactate 1
Fermentations: Mixed acid 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Isoleucine degradation 1
MLST 1
Propanediol utilization 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
SigmaB stress responce regulation 1
Threonine anaerobic catabolism gene cluster 1
Threonine and Homoserine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
acetate and ATP formation from acetyl-CoA I 2 2 1
L-glutamate degradation II 2 2 1
β-alanine degradation II 2 2 1
β-alanine degradation I 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
atromentin biosynthesis 2 1 1
L-tyrosine degradation II 2 1 1
sulfoacetaldehyde degradation I 2 1 1
malate/L-aspartate shuttle pathway 2 1 1
propanoyl-CoA degradation II 5 3 2
superpathway of acetate utilization and formation 3 3 1
pyruvate fermentation to acetate II 3 3 1
L-tyrosine biosynthesis I 3 3 1
L-phenylalanine biosynthesis I 3 3 1
benzoyl-CoA biosynthesis 3 3 1
pyruvate fermentation to acetate IV 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
pyruvate fermentation to acetate VII 3 2 1
sulfolactate degradation III 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
pyruvate fermentation to acetate I 3 2 1
superpathway of sulfolactate degradation 6 3 2
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
(R)-cysteate degradation 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
pyruvate fermentation to acetate and (S)-lactate I 4 4 1
pyruvate fermentation to acetate and lactate II 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
L-valine degradation I 8 5 2
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
sulfolactate degradation II 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
2-methyl-branched fatty acid β-oxidation 14 10 3
L-tyrosine degradation I 5 5 1
adipate degradation 5 5 1
ethanolamine utilization 5 5 1
acetylene degradation (anaerobic) 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
acrylate degradation I 5 3 1
superpathway of plastoquinol biosynthesis 5 2 1
(S)-propane-1,2-diol degradation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
superpathway of L-threonine biosynthesis 6 6 1
β-alanine biosynthesis II 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
TCA cycle VIII (Chlamydia) 6 4 1
L-threonine degradation I 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
superpathway of taurine degradation 6 2 1
methanogenesis from acetate 6 2 1
coenzyme M biosynthesis II 6 1 1
myo-inositol degradation I 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 2
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
2,4-dinitrotoluene degradation 7 1 1
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 3 1
superpathway of aromatic amino acid biosynthesis 18 18 2
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
valproate β-oxidation 9 6 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
phenylacetate degradation I (aerobic) 9 4 1
superpathway of L-alanine fermentation (Stickland reaction) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
myo-, chiro- and scyllo-inositol degradation 10 6 1
3-phenylpropanoate degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 3 1
rosmarinic acid biosynthesis I 10 2 1
pyruvate fermentation to hexanol (engineered) 11 7 1
superpathway of phenylethylamine degradation 11 6 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
(S)-reticuline biosynthesis I 11 1 1
oleate β-oxidation 35 30 3
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
indole-3-acetate biosynthesis II 12 4 1
superpathway of L-isoleucine biosynthesis I 13 13 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of rosmarinic acid biosynthesis 14 2 1
mixed acid fermentation 16 12 1
superpathway of anaerobic energy metabolism (invertebrates) 17 8 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
heterolactic fermentation 18 16 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
superpathway of L-threonine metabolism 18 13 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of methanogenesis 21 2 1
superpathway of N-acetylneuraminate degradation 22 15 1
purine nucleobases degradation II (anaerobic) 24 16 1
aspartate superpathway 25 22 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 20 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
superpathway of chorismate metabolism 59 43 2
superpathway of L-lysine degradation 43 18 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1