Experiment set4S1 for Pseudomonas sp. RS175

Compare to:

L-Arabinose carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + L-Arabinose (10 mM)
Culturing: Pseudomonas_RS175_ML2, 96 deep well, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 31-January-23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 9 genes in this experiment

For carbon source L-Arabinose in Pseudomonas sp. RS175

For carbon source L-Arabinose across organisms

SEED Subsystems

Subsystem #Specific
L-Arabinose utilization 5
D-Galacturonate and D-Glucuronate Utilization 1
Fatty Acid Biosynthesis FASII 1
Nitrate and nitrite ammonification 1
Proline, 4-hydroxyproline uptake and utilization 1
mycolic acid synthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-arabinose degradation III 6 5 4
L-lyxonate degradation 3 2 2
pyruvate fermentation to acetate VIII 2 1 1
D-galactarate degradation II 3 3 1
D-glucarate degradation II 3 3 1
L-arabinose degradation V 6 3 2
L-carnitine degradation II 3 1 1
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 12 3
L-valine biosynthesis 4 4 1
trans-4-hydroxy-L-proline degradation II 4 4 1
gondoate biosynthesis (anaerobic) 4 4 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 2
L-arabinose degradation IV 8 6 2
1,2-dichloroethane degradation 4 2 1
palmitate biosynthesis III 29 28 7
tetradecanoate biosynthesis (mitochondria) 25 23 6
palmitate biosynthesis II (type II fatty acid synthase) 31 29 7
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of fatty acids biosynthesis (E. coli) 53 49 11
fatty acid elongation -- saturated 5 5 1
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 18 4
D-glucuronate degradation II 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
mitochondrial NADPH production (yeast) 5 4 1
cytosolic NADPH production (yeast) 5 4 1
cis-vaccenate biosynthesis 5 4 1
D-galacturonate degradation II 5 3 1
D-xylose degradation V 5 1 1
D-xylose degradation III 5 1 1
superpathway of fatty acid biosynthesis II (plant) 43 38 8
8-amino-7-oxononanoate biosynthesis I 11 9 2
odd iso-branched-chain fatty acid biosynthesis 34 30 6
anteiso-branched-chain fatty acid biosynthesis 34 30 6
even iso-branched-chain fatty acid biosynthesis 34 30 6
(5Z)-dodecenoate biosynthesis I 6 6 1
(5Z)-dodecenoate biosynthesis II 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
L-isoleucine biosynthesis IV 6 4 1
petroselinate biosynthesis 6 2 1
D-arabinose degradation III 6 2 1
streptorubin B biosynthesis 34 20 5
L-isoleucine biosynthesis I (from threonine) 7 7 1
L-isoleucine biosynthesis III 7 4 1
biotin biosynthesis I 15 13 2
superpathway of fatty acid biosynthesis I (E. coli) 16 15 2
L-isoleucine biosynthesis II 8 5 1
2-allylmalonyl-CoA biosynthesis 8 2 1
superpathway of pentose and pentitol degradation 42 14 5
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of L-threonine metabolism 18 13 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 14 1
mycolate biosynthesis 205 20 5
superpathway of mycolate biosynthesis 239 21 5