Experiment set4IT065 for Escherichia coli BW25113

Compare to:

LB with 2,4-Dinitrophenol 2 mM

Group: stress
Media: LB + 2,4-Dinitrophenol (2 mM)
Culturing: Keio_ML9, 48 well microplate; Tecan Infinite F200, Aerobic, at 28 (C), shaken=orbital
By: Mitch on 3/18/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 56 genes in this experiment

For stress 2,4-Dinitrophenol in Escherichia coli BW25113

For stress 2,4-Dinitrophenol across organisms

SEED Subsystems

Subsystem #Specific
Formate hydrogenase 4
Selenocysteine metabolism 3
D-Tagatose and Galactitol Utilization 2
Deoxyribose and Deoxynucleoside Catabolism 2
Formate dehydrogenase 2
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Maltose and Maltodextrin Utilization 2
Pentose phosphate pathway 2
Adenosyl nucleosidases 1
Common Pathway For Synthesis of Aromatic Compounds (DAHP synthase to chorismate) 1
D-Galacturonate and D-Glucuronate Utilization 1
D-allose utilization 1
Folate Biosynthesis 1
Fructose utilization 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Heat shock dnaK gene cluster extended 1
KDO2-Lipid A biosynthesis 1
LOS core oligosaccharide biosynthesis 1
MLST 1
Mannitol Utilization 1
N-Acetyl-Galactosamine and Galactosamine Utilization 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Oxidative stress 1
Purine conversions 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Transport of Zinc 1
Trehalose Uptake and Utilization 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
formate oxidation to CO2 1 1 1
purine ribonucleosides degradation 6 6 5
purine deoxyribonucleosides degradation I 4 4 3
purine deoxyribonucleosides degradation II 3 3 2
L-selenocysteine biosynthesis I (bacteria) 3 3 2
galactitol degradation 5 5 3
superpathway of purine deoxyribonucleosides degradation 7 7 4
adenine and adenosine salvage III 4 4 2
siroheme biosynthesis 4 4 2
D-galactosamine and N-acetyl-D-galactosamine degradation 4 4 2
guanine and guanosine salvage I 2 2 1
glutathione degradation (DUG pathway) 2 2 1
pyruvate to cytochrome bd oxidase electron transfer 2 2 1
xanthine and xanthosine salvage 2 2 1
formate to trimethylamine N-oxide electron transfer 2 2 1
formate to dimethyl sulfoxide electron transfer 2 2 1
adenine and adenosine salvage I 2 2 1
2-O-α-mannosyl-D-glycerate degradation 2 2 1
nitrate reduction III (dissimilatory) 2 2 1
di-trans,poly-cis-undecaprenyl phosphate biosynthesis 2 2 1
pyruvate to cytochrome bo oxidase electron transfer 2 1 1
N-acetyl-D-galactosamine degradation 5 4 2
lactose degradation I 5 2 2
superpathway of pyrimidine deoxyribonucleosides degradation 6 6 2
pentose phosphate pathway (oxidative branch) I 3 3 1
adenine and adenosine salvage V 3 3 1
superpathway of guanine and guanosine salvage 3 3 1
glycerol degradation I 3 3 1
2-deoxy-α-D-ribose 1-phosphate degradation 3 3 1
pyrimidine deoxyribonucleosides degradation 3 3 1
formate to nitrite electron transfer 3 2 1
pyruvate fermentation to acetoin 3 1 1
D-tagatose degradation 3 1 1
factor 430 biosynthesis 7 3 2
purine nucleotides degradation II (aerobic) 11 11 3
pentose phosphate pathway 8 8 2
glycolate and glyoxylate degradation I 4 4 1
glycerol and glycerophosphodiester degradation 4 4 1
inosine 5'-phosphate degradation 4 4 1
D-galactarate degradation I 4 4 1
D-glucarate degradation I 4 4 1
guanosine nucleotides degradation III 4 4 1
oxalate degradation VI 4 2 1
L-selenocysteine biosynthesis II (archaea and eukaryotes) 4 2 1
pentose phosphate pathway (non-oxidative branch) I 5 5 1
adenosine nucleotides degradation II 5 5 1
superpathway of D-glucarate and D-galactarate degradation 5 5 1
polyisoprenoid biosynthesis (E. coli) 5 5 1
nucleoside and nucleotide degradation (archaea) 10 4 2
oxalate degradation III 5 2 1
superpathway of hexitol degradation (bacteria) 18 18 3
γ-glutamyl cycle 6 5 1
nucleoside and nucleotide degradation (halobacteria) 6 3 1
fluoroacetate and fluorothreonine biosynthesis 6 1 1
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) 13 2 2
superpathway of glycol metabolism and degradation 7 7 1
superpathway of purine nucleotide salvage 14 13 2
ureide biosynthesis 7 5 1
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) 15 3 2
2-deoxy-D-ribose degradation II 8 3 1
superpathway of glucose and xylose degradation 17 17 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 7 1
Entner-Doudoroff pathway II (non-phosphorylative) 9 6 1
photorespiration I 9 5 1
photorespiration III 9 5 1
lipid A-core biosynthesis (E. coli K-12) 10 9 1
Rubisco shunt 10 9 1
lipid A-core biosynthesis (Salmonella) 10 8 1
photorespiration II 10 6 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
superpathway of C1 compounds oxidation to CO2 12 4 1
formaldehyde assimilation I (serine pathway) 13 8 1
Bifidobacterium shunt 15 13 1
purine nucleobases degradation I (anaerobic) 15 6 1
salinosporamide A biosynthesis 15 3 1
adenosylcobalamin biosynthesis II (aerobic) 33 17 2
arsenic detoxification (mammals) 17 8 1
adenosylcobalamin biosynthesis I (anaerobic) 36 16 2
purine nucleobases degradation II (anaerobic) 24 17 1
superpathway of Kdo2-lipid A biosynthesis 25 24 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 19 1