Experiment set47S245 for Pseudomonas putida KT2440

Compare to:

L-tyrosine disodium salt 5 mM carbon source

Group: carbon source
Media: MME_noCarbon + L-tyrosine disodium salt (5 mM)
Culturing: Putida_ML5_PNNL, 96 deep well, Aerobic, at 30 (C), shaken=1200 rpm
By: Andrew Frank on 11/17/23
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 5 genes in this experiment

For carbon source L-tyrosine disodium salt in Pseudomonas putida KT2440

For carbon source L-tyrosine disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Threonine and Homoserine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate degradation I 1 1 1
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
malate/L-aspartate shuttle pathway 2 2 1
L-glutamate degradation II 2 2 1
atromentin biosynthesis 2 1 1
L-tyrosine degradation II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
L-tyrosine biosynthesis I 3 3 1
L-phenylalanine biosynthesis I 3 3 1
L-phenylalanine degradation II (anaerobic) 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
sulfolactate degradation III 3 1 1
(R)-cysteate degradation 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
L-tyrosine degradation I 5 5 1
trans-4-hydroxy-L-proline degradation I 5 3 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 2
superpathway of L-threonine biosynthesis 6 6 1
TCA cycle VIII (Chlamydia) 6 5 1
superpathway of sulfolactate degradation 6 2 1
coenzyme M biosynthesis II 6 1 1
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
superpathway of aromatic amino acid biosynthesis 18 18 2
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 6 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
rosmarinic acid biosynthesis I 10 2 1
(S)-reticuline biosynthesis I 11 3 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
indole-3-acetate biosynthesis II 12 5 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of rosmarinic acid biosynthesis 14 2 1
superpathway of anaerobic energy metabolism (invertebrates) 17 10 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
aspartate superpathway 25 22 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
superpathway of chorismate metabolism 59 42 2
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1