Experiment set3S377 for Phocaeicola dorei CL03T12C01

Compare to:

L-Glutamine nitrogen source; Varel_Bryant_medium_Glucose_lowCys_noNitrogen

Group: nitrogen source
Media: Varel_Bryant_medium_Glucose_lowCys_noNitrogen + L-Glutamine (10 mM)
Culturing: Bdorei_CL03T12C01_ML9, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Surya Tripathi on 20-Mar-24
Media components: 15 uM Hemin, 134 uM L-Methionine, 15 uM Iron (II) sulfate heptahydrate, 3 mM L-Cysteine, 23.8 mM Sodium bicarbonate, 20 mM D-Glucose, Mineral 3B solution minus Nitrogen (6.6 mM Potassium phosphate monobasic, 15.4 mM Sodium Chloride, 98 uM Magnesium chloride hexahydrate, 176.5 uM Calcium chloride dihydrate, 4.2 uM Cobalt chloride hexahydrate, 50.5 uM Manganese (II) chloride tetrahydrate, 1.75 mM Sodium sulfate)

Specific Phenotypes

For 6 genes in this experiment

For nitrogen source L-Glutamine in Phocaeicola dorei CL03T12C01

For nitrogen source L-Glutamine across organisms

SEED Subsystems

Subsystem #Specific
De Novo Pyrimidine Synthesis 2
Macromolecular synthesis operon 2
Ammonia assimilation 1
De Novo Purine Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutamine synthetases 1
Peptidoglycan Biosynthesis 1
Sialic Acid Metabolism 1
UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamine biosynthesis I 1 1 1
L-glutamine degradation I 1 1 1
ammonia assimilation cycle III 3 3 2
ammonia assimilation cycle I 2 2 1
L-glutamate biosynthesis I 2 2 1
ammonia assimilation cycle II 2 1 1
L-citrulline degradation 3 3 1
L-aspartate degradation III (anaerobic) 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
superpathway of ammonia assimilation (plants) 3 2 1
L-glutamate and L-glutamine biosynthesis 7 5 2
L-arginine degradation V (arginine deiminase pathway) 4 3 1
L-asparagine biosynthesis III (tRNA-dependent) 4 1 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 1 1
5-aminoimidazole ribonucleotide biosynthesis I 5 5 1
5-aminoimidazole ribonucleotide biosynthesis II 5 5 1
L-arginine biosynthesis II (acetyl cycle) 10 9 2
UDP-N-acetyl-D-glucosamine biosynthesis I 5 3 1
UMP biosynthesis III 6 6 1
superpathway of 5-aminoimidazole ribonucleotide biosynthesis 6 6 1
UMP biosynthesis II 6 6 1
UMP biosynthesis I 6 5 1
UDP-N-acetyl-D-glucosamine biosynthesis II 6 3 1
UDP-N-acetyl-D-galactosamine biosynthesis III 6 2 1
guadinomine B biosynthesis 13 2 2
L-citrulline biosynthesis 8 7 1
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
superpathway of pyrimidine ribonucleotides de novo biosynthesis 9 8 1
chitin biosynthesis 9 5 1
L-arginine biosynthesis IV (archaea) 9 4 1
allantoin degradation IV (anaerobic) 9 2 1
CMP-legionaminate biosynthesis I 10 2 1
O-antigen building blocks biosynthesis (E. coli) 11 9 1
superpathway of L-citrulline metabolism 12 9 1
superpathway of arginine and polyamine biosynthesis 17 11 1
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis 18 16 1
superpathway of purine nucleotides de novo biosynthesis I 21 21 1
superpathway of histidine, purine, and pyrimidine biosynthesis 46 42 2
superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 24 4 1
superpathway of purine nucleotides de novo biosynthesis II 26 23 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 11 1