Experiment set3S331 for Phocaeicola dorei CL03T12C01

Compare to:

Glycogen; autoclaved 2.5 mg/ml carbon source

Group: carbon source
Media: Varel_Bryant_medium + Glycogen; autoclaved (2.5 mg/ml)
Culturing: Bdorei_CL03T12C01_ML9, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Surya Tripathi on 3/20/24
Media components: 15 uM Hemin, 134 uM L-Methionine, 15 uM Iron (II) sulfate heptahydrate, 8.25 mM L-Cysteine, 23.8 mM Sodium bicarbonate, Mineral 3B solution (6.6 mM Potassium phosphate monobasic, 15.4 mM Sodium Chloride, 98 uM Magnesium chloride hexahydrate, 176.5 uM Calcium chloride dihydrate, 4.2 uM Cobalt chloride hexahydrate, 50.5 uM Manganese (II) chloride tetrahydrate, 9.3 mM Ammonium chloride, 1.75 mM Sodium sulfate)

Specific Phenotypes

For 7 genes in this experiment

For carbon source Glycogen; autoclaved in Phocaeicola dorei CL03T12C01

For carbon source Glycogen; autoclaved across organisms

SEED Subsystems

Subsystem #Specific
Purine conversions 2
Adenosyl nucleosidases 1
Deoxyribose and Deoxynucleoside Catabolism 1
Thiamin biosynthesis 1
cAMP signaling in bacteria 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
guanine and guanosine salvage I 2 2 2
adenine and adenosine salvage I 2 2 2
purine deoxyribonucleosides degradation I 4 3 3
pyrimidine ribonucleosides salvage I 3 3 2
purine ribonucleosides degradation 6 4 4
purine deoxyribonucleosides degradation II 3 2 2
superpathway of guanine and guanosine salvage 3 2 2
purine nucleotides degradation II (aerobic) 11 8 6
CMP phosphorylation 2 2 1
pyrimidine ribonucleosides degradation 2 2 1
xanthine and xanthosine salvage 2 2 1
inosine 5'-phosphate degradation 4 3 2
adenine and adenosine salvage III 4 3 2
guanosine nucleotides degradation III 4 3 2
adenine and adenosine salvage II 2 1 1
guanine and guanosine salvage II 2 1 1
superpathway of purine deoxyribonucleosides degradation 7 4 3
nucleoside and nucleotide degradation (archaea) 10 4 4
adenosine nucleotides degradation II 5 2 2
pyrimidine deoxyribonucleosides degradation 3 2 1
NAD salvage pathway III (to nicotinamide riboside) 3 2 1
adenine salvage 3 2 1
adenine and adenosine salvage V 3 1 1
superpathway of pyrimidine ribonucleosides salvage 10 9 3
superpathway of purine nucleotide salvage 14 13 4
UTP and CTP dephosphorylation I 7 5 2
ureide biosynthesis 7 3 2
pyrimidine deoxyribonucleotide phosphorylation 4 3 1
guanosine nucleotides degradation II 4 2 1
purine nucleotides degradation I (plants) 12 5 3
adenosine nucleotides degradation I 8 3 2
guanosine nucleotides degradation I 4 1 1
superpathway of pyrimidine ribonucleosides degradation 5 2 1
superpathway of pyrimidine deoxyribonucleosides degradation 6 3 1
superpathway of guanosine nucleotides degradation (plants) 6 2 1
nucleoside and nucleotide degradation (halobacteria) 6 2 1
superpathway of purines degradation in plants 18 5 3
fluoroacetate and fluorothreonine biosynthesis 6 1 1
glyphosate degradation III 7 2 1
(aminomethyl)phosphonate degradation 8 2 1
superpathway of pyrimidine deoxyribonucleoside salvage 9 7 1
tunicamycin biosynthesis 9 1 1
NAD salvage (plants) 11 4 1
salinosporamide A biosynthesis 15 4 1
arsenic detoxification (mammals) 17 7 1