Experiment set3S305 for Phocaeicola dorei CL03T12C01

Compare to:

Xylan from Beechwood; autoclaved 2.5 mg/ml carbon source

Group: carbon source
Media: Varel_Bryant_medium + Xylan from Beechwood; autoclaved (2.5 mg/ml)
Culturing: Bdorei_CL03T12C01_ML9, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Surya Tripathi on 3/20/24
Media components: 15 uM Hemin, 134 uM L-Methionine, 15 uM Iron (II) sulfate heptahydrate, 8.25 mM L-Cysteine, 23.8 mM Sodium bicarbonate, Mineral 3B solution (6.6 mM Potassium phosphate monobasic, 15.4 mM Sodium Chloride, 98 uM Magnesium chloride hexahydrate, 176.5 uM Calcium chloride dihydrate, 4.2 uM Cobalt chloride hexahydrate, 50.5 uM Manganese (II) chloride tetrahydrate, 9.3 mM Ammonium chloride, 1.75 mM Sodium sulfate)

Specific Phenotypes

For 10 genes in this experiment

For carbon source Xylan from Beechwood; autoclaved in Phocaeicola dorei CL03T12C01

For carbon source Xylan from Beechwood; autoclaved across organisms

SEED Subsystems

Subsystem #Specific
D-Galacturonate and D-Glucuronate Utilization 2
Xylose utilization 2
Iron acquisition in Vibrio 1
Ton and Tol transport systems 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
(1,4)-β-D-xylan degradation 2 2 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
3-methyl-branched fatty acid α-oxidation 6 2 2
cellulose and hemicellulose degradation (cellulolosome) 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
D-fructuronate degradation 4 4 1
phytol degradation 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
sphingosine and sphingosine-1-phosphate metabolism 10 2 2
octane oxidation 5 1 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
fatty acid salvage 6 2 1
6-gingerol analog biosynthesis (engineered) 6 1 1
stearate biosynthesis I (animals) 6 1 1
superpathway of β-D-glucuronosides degradation 7 6 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
ceramide degradation by α-oxidation 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 2 2
superpathway of hexuronide and hexuronate degradation 10 9 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 37 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 47 2
palmitate biosynthesis III 29 21 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 13 1
oleate β-oxidation 35 4 1