Experiment set3IT089 for Agrobacterium fabrum C58

Compare to:

L-Pipecolic Acid nitrogen source

Group: nitrogen source
Media: MOPS minimal media_Succinate_noNitrogen + L-Pipecolic Acid (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 11/20/20
Media components: 10 mM Sodium succinate dibasic hexahydrate, 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 9 genes in this experiment

For nitrogen source L-Pipecolic Acid in Agrobacterium fabrum C58

For nitrogen source L-Pipecolic Acid across organisms

SEED Subsystems

Subsystem #Specific
Acetoin, butanediol metabolism 1
Acetyl-CoA fermentation to Butyrate 1
Branched-Chain Amino Acid Biosynthesis 1
Butanol Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Methylglyoxal Metabolism 1
Peptidoglycan Biosynthesis 1
Polyhydroxybutyrate metabolism 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-lactaldehyde degradation (aerobic) 2 2 1
pyruvate fermentation to (R)-acetoin II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
benzoyl-CoA biosynthesis 3 3 1
pyruvate fermentation to (R)-acetoin I 3 3 1
pyruvate fermentation to butanol II (engineered) 6 4 2
polyhydroxybutanoate biosynthesis 3 2 1
pyruvate fermentation to (S)-acetoin 3 2 1
methylglyoxal degradation IV 3 2 1
ketolysis 3 2 1
methylglyoxal degradation V 3 2 1
hypotaurine degradation 3 2 1
ethanol degradation III 3 2 1
histamine degradation 3 1 1
pyruvate fermentation to butanoate 7 3 2
pyruvate fermentation to hexanol (engineered) 11 7 3
oleate β-oxidation 35 27 9
L-valine biosynthesis 4 4 1
phytol degradation 4 3 1
pyruvate fermentation to butanol I 8 4 2
fatty acid α-oxidation I (plants) 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 2 1
2-methylpropene degradation 8 3 2
putrescine degradation III 4 1 1
valproate β-oxidation 9 5 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 2
2-methyl-branched fatty acid β-oxidation 14 9 3
superpathway of (R,R)-butanediol biosynthesis 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
mitochondrial NADPH production (yeast) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
ketogenesis 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
L-glutamate degradation V (via hydroxyglutarate) 10 4 2
octane oxidation 5 2 1
lactate biosynthesis (archaea) 5 2 1
methyl tert-butyl ether degradation 10 3 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to acetone 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
dopamine degradation 5 1 1
fatty acid salvage 6 5 1
L-isoleucine degradation I 6 4 1
3-methyl-branched fatty acid α-oxidation 6 3 1
L-isoleucine biosynthesis IV 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
L-glutamate degradation VII (to butanoate) 12 4 2
superpathway of 2,3-butanediol biosynthesis 6 2 1
4-ethylphenol degradation (anaerobic) 6 2 1
alkane oxidation 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
noradrenaline and adrenaline degradation 13 4 2
L-isoleucine biosynthesis I (from threonine) 7 7 1
L-isoleucine biosynthesis III 7 4 1
fatty acid β-oxidation I (generic) 7 4 1
serotonin degradation 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 4 2
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing) 8 8 1
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing) 8 7 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 6 1
glycerol degradation to butanol 16 11 2
superpathway of methylglyoxal degradation 8 5 1
L-isoleucine biosynthesis II 8 5 1
L-rhamnose degradation II 8 5 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
mevalonate pathway IV (archaea) 8 1 1
aromatic biogenic amine degradation (bacteria) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
L-lysine degradation II (L-pipecolate pathway) 9 2 1
4-oxopentanoate degradation 9 2 1
L-lysine degradation V 9 2 1
toluene degradation VI (anaerobic) 18 3 2
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
L-lysine fermentation to acetate and butanoate 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 11 1
superpathway of fucose and rhamnose degradation 12 7 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
superpathway of L-isoleucine biosynthesis I 13 13 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of L-threonine metabolism 18 11 1
sitosterol degradation to androstenedione 18 1 1
superpathway of L-lysine degradation 43 10 2
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of cholesterol biosynthesis 38 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1