Experiment set3IT079 for Agrobacterium fabrum C58

Compare to:

2,6-diaminopimelic acid nitrogen source

Group: nitrogen source
Media: MOPS minimal media_Succinate_noNitrogen + 2,6-diaminopimelic acid (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 11/20/20
Media components: 10 mM Sodium succinate dibasic hexahydrate, 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 9 genes in this experiment

For nitrogen source 2,6-diaminopimelic acid in Agrobacterium fabrum C58

For nitrogen source 2,6-diaminopimelic acid across organisms

SEED Subsystems

Subsystem #Specific
Acetoin, butanediol metabolism 1
Branched-Chain Amino Acid Biosynthesis 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Methylglyoxal Metabolism 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-lactaldehyde degradation (aerobic) 2 2 1
pyruvate fermentation to (R)-acetoin II 2 1 1
pyruvate fermentation to (R)-acetoin I 3 3 1
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
ethanol degradation III 3 2 1
pyruvate fermentation to (S)-acetoin 3 2 1
methylglyoxal degradation IV 3 2 1
methylglyoxal degradation V 3 2 1
hypotaurine degradation 3 2 1
histamine degradation 3 1 1
L-valine biosynthesis 4 4 1
phytol degradation 4 3 1
fatty acid α-oxidation I (plants) 4 2 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 2 1
putrescine degradation III 4 1 1
superpathway of (R,R)-butanediol biosynthesis 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
mitochondrial NADPH production (yeast) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
lactate biosynthesis (archaea) 5 2 1
dopamine degradation 5 1 1
L-isoleucine biosynthesis IV 6 3 1
3-methyl-branched fatty acid α-oxidation 6 3 1
superpathway of 2,3-butanediol biosynthesis 6 2 1
alkane oxidation 6 1 1
noradrenaline and adrenaline degradation 13 4 2
L-isoleucine biosynthesis I (from threonine) 7 7 1
L-isoleucine biosynthesis III 7 4 1
serotonin degradation 7 3 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 6 1
L-isoleucine biosynthesis II 8 5 1
superpathway of methylglyoxal degradation 8 5 1
L-rhamnose degradation II 8 5 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
aromatic biogenic amine degradation (bacteria) 8 1 1
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of fucose and rhamnose degradation 12 7 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of L-threonine metabolism 18 11 1