Experiment set3IT075 for Agrobacterium fabrum C58

Compare to:

L-Threonine nitrogen source

Group: nitrogen source
Media: MOPS minimal media_Succinate_noNitrogen + L-Threonine (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 11/20/20
Media components: 10 mM Sodium succinate dibasic hexahydrate, 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 6 genes in this experiment

For nitrogen source L-Threonine in Agrobacterium fabrum C58

For nitrogen source L-Threonine across organisms

SEED Subsystems

Subsystem #Specific
Ammonia assimilation 2
Alanine biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutamine synthetases 1
Glycine and Serine Utilization 1
Methionine Biosynthesis 1
One-carbon metabolism by tetrahydropterines 1
Peptidoglycan Biosynthesis 1
Pyruvate Alanine Serine Interconversions 1
Serine-glyoxylate cycle 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
glycine biosynthesis IV 1 1 1
L-cysteine degradation IV 1 1 1
L-glutamine biosynthesis I 1 1 1
L-alanine biosynthesis III 1 1 1
D-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
L-cysteine degradation II 3 2 2
ammonia assimilation cycle I 2 2 1
cytidylyl molybdenum cofactor sulfurylation 2 1 1
L-threonine degradation IV 2 1 1
ammonia assimilation cycle II 2 1 1
glycine betaine degradation III 7 4 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 6 3
glycine degradation 3 3 1
ammonia assimilation cycle III 3 3 1
L-methionine biosynthesis II 6 5 2
L-aspartate degradation III (anaerobic) 3 2 1
superpathway of ammonia assimilation (plants) 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
bis(guanylyl molybdopterin) cofactor sulfurylation 3 1 1
thiazole component of thiamine diphosphate biosynthesis II 7 4 2
superpathway of L-alanine biosynthesis 4 4 1
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 3 2
tRNA-uridine 2-thiolation (mammalian mitochondria) 4 1 1
tRNA-uridine 2-thiolation (yeast mitochondria) 4 1 1
tRNA-uridine 2-thiolation (thermophilic bacteria) 5 2 1
[2Fe-2S] iron-sulfur cluster biosynthesis 10 2 2
superpathway of thiamine diphosphate biosynthesis II 11 7 2
molybdopterin biosynthesis 6 2 1
thiazole component of thiamine diphosphate biosynthesis I 6 2 1
L-glutamate and L-glutamine biosynthesis 7 4 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
purine nucleobases degradation II (anaerobic) 24 14 3
tRNA-uridine 2-thiolation (cytoplasmic) 8 1 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of thiamine diphosphate biosynthesis I 10 5 1
tRNA-uridine 2-thiolation and selenation (bacteria) 11 2 1
folate transformations I 13 8 1
superpathway of L-threonine metabolism 18 11 1