Pathway | #Steps | #Present | #Specific |
ethanol degradation I | 2 | 2 | 2 |
bis(guanylyl molybdenum cofactor) biosynthesis | 2 | 2 | 2 |
bis(guanylyl tungstenpterin) cofactor biosynthesis | 1 | 1 | 1 |
long-chain fatty acid activation | 1 | 1 | 1 |
acetaldehyde biosynthesis I | 1 | 1 | 1 |
guanylyl molybdenum cofactor biosynthesis | 1 | 1 | 1 |
formate oxidation to CO2 | 1 | 1 | 1 |
phytol degradation | 4 | 3 | 3 |
ethanol degradation II | 3 | 3 | 2 |
pyruvate fermentation to ethanol III | 3 | 2 | 2 |
pyruvate fermentation to ethanol I | 3 | 2 | 2 |
putrescine degradation V | 2 | 2 | 1 |
3-dehydroquinate biosynthesis I | 2 | 2 | 1 |
CO2 fixation into oxaloacetate (anaplerotic) | 2 | 2 | 1 |
L-threonine degradation IV | 2 | 2 | 1 |
3-methyl-branched fatty acid α-oxidation | 6 | 3 | 3 |
linoleate biosynthesis II (animals) | 2 | 1 | 1 |
phenylethylamine degradation I | 2 | 1 | 1 |
ethylene glycol degradation | 2 | 1 | 1 |
putrescine degradation I | 2 | 1 | 1 |
γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
phenylethanol degradation | 2 | 1 | 1 |
phenylethylamine degradation II | 2 | 1 | 1 |
pyruvate fermentation to ethanol II | 2 | 1 | 1 |
ethanolamine utilization | 5 | 5 | 2 |
acetylene degradation (anaerobic) | 5 | 4 | 2 |
octane oxidation | 5 | 4 | 2 |
sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 4 |
fatty acid salvage | 6 | 6 | 2 |
ethanol degradation IV | 3 | 3 | 1 |
2-aminoethylphosphonate degradation I | 3 | 3 | 1 |
L-isoleucine degradation II | 3 | 2 | 1 |
L-valine degradation II | 3 | 2 | 1 |
L-leucine degradation III | 3 | 2 | 1 |
ethanol degradation III | 3 | 2 | 1 |
hypotaurine degradation | 3 | 2 | 1 |
2-deoxy-D-ribose degradation I | 3 | 2 | 1 |
L-phenylalanine degradation II (anaerobic) | 3 | 2 | 1 |
putrescine degradation IV | 3 | 2 | 1 |
histamine degradation | 3 | 1 | 1 |
styrene degradation | 3 | 1 | 1 |
alkane biosynthesis II | 3 | 1 | 1 |
oleate biosynthesis I (plants) | 3 | 1 | 1 |
L-methionine degradation III | 3 | 1 | 1 |
sulfoacetaldehyde degradation IV | 3 | 1 | 1 |
2-deoxy-α-D-ribose 1-phosphate degradation | 3 | 1 | 1 |
2-hydroxypenta-2,4-dienoate degradation | 3 | 1 | 1 |
noradrenaline and adrenaline degradation | 13 | 4 | 4 |
serotonin degradation | 7 | 3 | 2 |
ceramide degradation by α-oxidation | 7 | 2 | 2 |
fatty acid α-oxidation I (plants) | 4 | 2 | 1 |
putrescine degradation III | 4 | 2 | 1 |
L-phenylalanine degradation III | 4 | 2 | 1 |
D-arabinose degradation II | 4 | 2 | 1 |
L-tyrosine degradation III | 4 | 2 | 1 |
ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 4 |
salidroside biosynthesis | 4 | 1 | 1 |
oxalate degradation VI | 4 | 1 | 1 |
L-tryptophan degradation X (mammalian, via tryptamine) | 4 | 1 | 1 |
phosphatidylcholine acyl editing | 4 | 1 | 1 |
wax esters biosynthesis II | 4 | 1 | 1 |
long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
superpathway of fermentation (Chlamydomonas reinhardtii) | 9 | 5 | 2 |
sporopollenin precursors biosynthesis | 18 | 4 | 4 |
adipate degradation | 5 | 5 | 1 |
pyruvate fermentation to isobutanol (engineered) | 5 | 4 | 1 |
mitochondrial NADPH production (yeast) | 5 | 4 | 1 |
(S)-propane-1,2-diol degradation | 5 | 2 | 1 |
phenylethanol biosynthesis | 5 | 1 | 1 |
dopamine degradation | 5 | 1 | 1 |
oxalate degradation III | 5 | 1 | 1 |
catechol degradation I (meta-cleavage pathway) | 5 | 1 | 1 |
mixed acid fermentation | 16 | 12 | 3 |
stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
stearate biosynthesis IV | 6 | 4 | 1 |
superpathway of pyrimidine deoxyribonucleosides degradation | 6 | 3 | 1 |
6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
stearate biosynthesis I (animals) | 6 | 1 | 1 |
alkane oxidation | 6 | 1 | 1 |
triethylamine degradation | 6 | 1 | 1 |
superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 5 | 2 |
chorismate biosynthesis I | 7 | 7 | 1 |
3-methylbutanol biosynthesis (engineered) | 7 | 6 | 1 |
superpathway of purine deoxyribonucleosides degradation | 7 | 5 | 1 |
superpathway of glycol metabolism and degradation | 7 | 5 | 1 |
C4 photosynthetic carbon assimilation cycle, NADP-ME type | 7 | 4 | 1 |
catechol degradation II (meta-cleavage pathway) | 7 | 2 | 1 |
limonene degradation IV (anaerobic) | 7 | 1 | 1 |
toluene degradation I (aerobic) (via o-cresol) | 7 | 1 | 1 |
arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
toluene degradation V (aerobic) (via toluene-cis-diol) | 7 | 1 | 1 |
capsaicin biosynthesis | 7 | 1 | 1 |
icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
partial TCA cycle (obligate autotrophs) | 8 | 8 | 1 |
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) | 8 | 7 | 1 |
2-deoxy-D-ribose degradation II | 8 | 7 | 1 |
nitrogen remobilization from senescing leaves | 8 | 6 | 1 |
superpathway of ornithine degradation | 8 | 6 | 1 |
butanol and isobutanol biosynthesis (engineered) | 8 | 3 | 1 |
3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation | 8 | 2 | 1 |
aromatic biogenic amine degradation (bacteria) | 8 | 2 | 1 |
p-cumate degradation | 8 | 1 | 1 |
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 7 | 2 |
oleate β-oxidation | 35 | 30 | 4 |
heterolactic fermentation | 18 | 14 | 2 |
Entner-Doudoroff pathway II (non-phosphorylative) | 9 | 6 | 1 |
L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 3 | 1 |
hexitol fermentation to lactate, formate, ethanol and acetate | 19 | 14 | 2 |
superpathway of L-tyrosine biosynthesis | 10 | 10 | 1 |
superpathway of L-phenylalanine biosynthesis | 10 | 10 | 1 |
meta cleavage pathway of aromatic compounds | 10 | 3 | 1 |
suberin monomers biosynthesis | 20 | 2 | 2 |
superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 4 |
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation | 11 | 8 | 1 |
superpathway of N-acetylneuraminate degradation | 22 | 15 | 2 |
C4 photosynthetic carbon assimilation cycle, NAD-ME type | 11 | 6 | 1 |
superpathway of phenylethylamine degradation | 11 | 4 | 1 |
p-cymene degradation | 11 | 1 | 1 |
superpathway of C1 compounds oxidation to CO2 | 12 | 5 | 1 |
L-tryptophan degradation XII (Geobacillus) | 12 | 4 | 1 |
L-tryptophan degradation IX | 12 | 4 | 1 |
naphthalene degradation to acetyl-CoA | 12 | 2 | 1 |
superpathway of L-tryptophan biosynthesis | 13 | 13 | 1 |
superpathway of L-arginine and L-ornithine degradation | 13 | 10 | 1 |
formaldehyde assimilation I (serine pathway) | 13 | 6 | 1 |
toluene degradation IV (aerobic) (via catechol) | 13 | 4 | 1 |
L-tryptophan degradation V (side chain pathway) | 13 | 1 | 1 |
2-methyl-branched fatty acid β-oxidation | 14 | 11 | 1 |
C4 photosynthetic carbon assimilation cycle, PEPCK type | 14 | 9 | 1 |
purine nucleobases degradation I (anaerobic) | 15 | 6 | 1 |
palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
cutin biosynthesis | 16 | 1 | 1 |
superpathway of aromatic amino acid biosynthesis | 18 | 18 | 1 |
superpathway of L-threonine metabolism | 18 | 12 | 1 |
mandelate degradation to acetyl-CoA | 18 | 9 | 1 |
gluconeogenesis II (Methanobacterium thermoautotrophicum) | 18 | 9 | 1 |
superpathway of anaerobic sucrose degradation | 19 | 14 | 1 |
purine nucleobases degradation II (anaerobic) | 24 | 16 | 1 |
ethene biosynthesis V (engineered) | 25 | 18 | 1 |
superpathway of fatty acids biosynthesis (E. coli) | 53 | 49 | 2 |
anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 3 | 1 |
palmitate biosynthesis III | 29 | 21 | 1 |
superpathway of aerobic toluene degradation | 30 | 12 | 1 |
superpathway of aromatic compound degradation via 3-oxoadipate | 35 | 21 | 1 |
superpathway of pentose and pentitol degradation | 42 | 16 | 1 |
superpathway of aromatic compound degradation via 2-hydroxypentadienoate | 42 | 15 | 1 |
Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 20 | 1 |
superpathway of chorismate metabolism | 59 | 44 | 1 |