Experiment set3IT007 for Echinicola vietnamensis KMM 6221, DSM 17526

Compare to:

D-Glucosamine Hydrochloride carbon source

Group: carbon source
Media: DinoMM_noCarbon_HighNutrient + D-Glucosamine Hydrochloride (20 mM), pH=7
Culturing: Cola_ML5, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
Growth: about 3.9 generations
By: Adam on 8-May-17
Media components: 20 g/L Sea salts, 0.3 g/L Ammonium Sulfate, 0.1 g/L Potassium phosphate monobasic, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Growth plate: 1715 C4

Specific Phenotypes

For 6 genes in this experiment

For carbon source D-Glucosamine Hydrochloride in Echinicola vietnamensis KMM 6221, DSM 17526

For carbon source D-Glucosamine Hydrochloride across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Chitin and N-acetylglucosamine utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
Ketoisovalerate oxidoreductase 1
Polyhydroxybutyrate metabolism 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA III 1 1 1
acetate conversion to acetyl-CoA 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation II (plant peroxisome) 5 4 2
adipate degradation 5 4 2
adipate biosynthesis 5 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 4
2-methyl-branched fatty acid β-oxidation 14 9 5
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
valproate β-oxidation 9 6 3
methyl ketone biosynthesis (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
L-isoleucine biosynthesis V 3 2 1
ethanol degradation III 3 2 1
propanoate fermentation to 2-methylbutanoate 6 3 2
superpathway of acetate utilization and formation 3 1 1
oleate β-oxidation 35 27 11
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
fatty acid β-oxidation I (generic) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
chitin deacetylation 4 1 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 2 2
glutaryl-CoA degradation 5 3 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 2 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
3-phenylpropanoate degradation 10 3 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
fatty acid β-oxidation IV (unsaturated, even number) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of phenylethylamine degradation 11 2 2
fatty acid salvage 6 5 1
pyruvate fermentation to butanol II (engineered) 6 5 1
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of bitter acids biosynthesis 18 3 3
colupulone and cohumulone biosynthesis 6 1 1
lupulone and humulone biosynthesis 6 1 1
adlupulone and adhumulone biosynthesis 6 1 1
superpathway of glyoxylate cycle and fatty acid degradation 14 10 2
pyruvate fermentation to butanoate 7 4 1
Spodoptera littoralis pheromone biosynthesis 22 3 3
pyruvate fermentation to butanol I 8 6 1
L-valine degradation I 8 3 1
2-methylpropene degradation 8 2 1
reductive glycine pathway of autotrophic CO2 fixation 9 4 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 4 1
cis-geranyl-CoA degradation 9 1 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
methyl tert-butyl ether degradation 10 2 1
L-glutamate degradation VII (to butanoate) 12 4 1
androstenedione degradation I (aerobic) 25 6 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 1
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
L-tryptophan degradation III (eukaryotic) 15 7 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
glycerol degradation to butanol 16 12 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 1
toluene degradation VI (anaerobic) 18 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
1-butanol autotrophic biosynthesis (engineered) 27 20 1