Experiment set39IT048 for Pseudomonas putida KT2440

Compare to:

1,3-Hexanediol carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 1,3-Hexanediol (10 mM)
Culturing: Putida_ML5_JBEI, 24-well plate, Aerobic, at 30 (C), shaken=200 rpm
By: Allie Pearson on 28-Sep
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 16 genes in this experiment

For carbon source 1,3-Hexanediol in Pseudomonas putida KT2440

For carbon source 1,3-Hexanediol across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 2
Butanol Biosynthesis 2
Polyhydroxybutyrate metabolism 2
Isoleucine degradation 1
Multidrug Resistance Efflux Pumps 1
Ribosome biogenesis bacterial 1
Ton and Tol transport systems 1
Trehalose Biosynthesis 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
trehalose biosynthesis IV 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 4 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
oleate β-oxidation 35 30 16
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 3 2
pyruvate fermentation to hexanol (engineered) 11 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
fatty acid salvage 6 6 2
L-isoleucine degradation I 6 5 2
valproate β-oxidation 9 7 3
propanoate fermentation to 2-methylbutanoate 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
Arg/N-end rule pathway (eukaryotic) 14 8 4
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
pyruvate fermentation to butanoate 7 3 2
L-valine degradation I 8 6 2
pyruvate fermentation to butanol I 8 3 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
phenylacetate degradation I (aerobic) 9 9 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
superpathway of phenylethylamine degradation 11 11 2
6-gingerol analog biosynthesis (engineered) 6 3 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 3 2
glycerol degradation to butanol 16 9 2
glycogen biosynthesis III (from α-maltose 1-phosphate) 8 3 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
2-methylpropene degradation 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
toluene degradation VI (anaerobic) 18 4 2
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
androstenedione degradation I (aerobic) 25 7 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of testosterone and androsterone degradation 28 7 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1