Experiment set33S266 for Pseudomonas simiae WCS417

Compare to:

Fraxetin 3 mM; solid stress

Group: solid stress
Media: + Fraxetin (3 mM)
Culturing: fluoroDangl_ML3b, (Solid)
By: Max Stassen on 29-Mar-24

Specific Phenotypes

For 26 genes in this experiment

For solid stress Fraxetin in Pseudomonas simiae WCS417

For solid stress Fraxetin across organisms

SEED Subsystems

Subsystem #Specific
Photorespiration (oxidative C2 cycle) 4
Glycine and Serine Utilization 3
Iron acquisition in Vibrio 3
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 2
Glycine cleavage system 2
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 2
Serine-glyoxylate cycle 2
Transport of Iron 2
Allantoin Utilization 1
Coenzyme B12 biosynthesis 1
D-galactarate, D-glucarate and D-glycerate catabolism 1
DNA repair, bacterial 1
Glutamate dehydrogenases 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Lactate utilization 1
Lipid A modifications 1
Lysine degradation 1
Oxidative stress 1
Peptidoglycan Biosynthesis 1
Polyamine Metabolism 1
Propionate-CoA to Succinate Module 1
TCA Cycle 1
Threonine and Homoserine Biosynthesis 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
L-glutamate degradation I 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
superoxide radicals degradation 2 2 1
L-glutamate degradation II 2 2 1
L-tyrosine degradation II 2 1 1
atromentin biosynthesis 2 1 1
2-O-α-mannosyl-D-glycerate degradation 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
malate/L-aspartate shuttle pathway 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
glycine cleavage 3 3 1
ethanol degradation IV 3 3 1
glycine biosynthesis II 3 3 1
L-phenylalanine biosynthesis I 3 3 1
L-alanine degradation II (to D-lactate) 3 3 1
L-tyrosine biosynthesis I 3 3 1
glycine degradation 3 3 1
glyoxylate cycle 6 5 2
L-asparagine degradation III (mammalian) 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
sulfolactate degradation III 3 1 1
ethene biosynthesis IV (engineered) 3 1 1
(R)-cysteate degradation 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
partial TCA cycle (obligate autotrophs) 8 8 2
reactive oxygen species degradation 4 4 1
nitrogen remobilization from senescing leaves 8 6 2
glycolate and glyoxylate degradation I 4 3 1
D-glucarate degradation I 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
D-galactarate degradation I 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
TCA cycle V (2-oxoglutarate synthase) 9 7 2
TCA cycle VII (acetate-producers) 9 7 2
TCA cycle II (plants and fungi) 9 7 2
TCA cycle VI (Helicobacter) 9 7 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 6 2
photorespiration I 9 5 2
photorespiration III 9 5 2
L-tyrosine degradation I 5 5 1
TCA cycle I (prokaryotic) 10 9 2
superpathway of D-glucarate and D-galactarate degradation 5 4 1
TCA cycle III (animals) 10 7 2
photorespiration II 10 6 2
trans-4-hydroxy-L-proline degradation I 5 3 1
superpathway of plastoquinol biosynthesis 5 2 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 2
reductive TCA cycle I 11 6 2
superpathway of L-threonine biosynthesis 6 6 1
superpathway of glyoxylate bypass and TCA 12 11 2
TCA cycle VIII (Chlamydia) 6 5 1
reductive TCA cycle II 12 5 2
superpathway of sulfolactate degradation 6 2 1
coenzyme M biosynthesis II 6 1 1
methylaspartate cycle 19 10 3
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
superpathway of glycol metabolism and degradation 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 2
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
4-aminobutanoate degradation V 7 2 1
2-deoxy-D-ribose degradation II 8 7 1
mixed acid fermentation 16 12 2
superpathway of aromatic amino acid biosynthesis 18 18 2
folate transformations III (E. coli) 9 9 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
Entner-Doudoroff pathway II (non-phosphorylative) 9 6 1
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 3 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
peptidoglycan recycling II 10 8 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
rosmarinic acid biosynthesis I 10 2 1
folate transformations II (plants) 11 10 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 2
(S)-reticuline biosynthesis I 11 1 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
indole-3-acetate biosynthesis II 12 5 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
folate transformations I 13 9 1
formaldehyde assimilation I (serine pathway) 13 6 1
peptidoglycan recycling I 14 11 1
superpathway of rosmarinic acid biosynthesis 14 3 1
superpathway of anaerobic energy metabolism (invertebrates) 17 9 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
aspartate superpathway 25 22 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 3 1
superpathway of chorismate metabolism 59 44 2
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 13 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1