Experiment set32S545 for Pseudomonas simiae WCS417

Compare to:

Fraxetin 3 mM; solid stress

Group: solid stress
Media: + Fraxetin (3 mM)
Culturing: fluoroDangl_ML3b
By: Max Stassen on 29-Mar-24

Specific Phenotypes

For 28 genes in this experiment

For solid stress Fraxetin in Pseudomonas simiae WCS417

For solid stress Fraxetin across organisms

SEED Subsystems

Subsystem #Specific
Transport of Iron 4
Iron acquisition in Vibrio 3
Serine-glyoxylate cycle 2
Biotin biosynthesis 1
Copper homeostasis 1
DNA repair, bacterial 1
Entner-Doudoroff Pathway 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Glycolysis and Gluconeogenesis 1
Lipid A modifications 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Oxidative stress 1
Photorespiration (oxidative C2 cycle) 1
Propionate-CoA to Succinate Module 1
Ribosome biogenesis bacterial 1
TCA Cycle 1
Transport of Manganese 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-glutamate degradation I 1 1 1
superoxide radicals degradation 2 2 1
trehalose degradation I (low osmolarity) 2 2 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
trehalose degradation II (cytosolic) 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
L-alanine degradation II (to D-lactate) 3 3 1
ethanol degradation IV 3 3 1
glyoxylate cycle 6 5 2
trehalose degradation V 3 2 1
GDP-α-D-glucose biosynthesis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
trehalose degradation IV 3 1 1
ethene biosynthesis IV (engineered) 3 1 1
oleate biosynthesis I (plants) 3 1 1
partial TCA cycle (obligate autotrophs) 8 8 2
reactive oxygen species degradation 4 4 1
nitrogen remobilization from senescing leaves 8 6 2
sucrose degradation III (sucrose invertase) 4 3 1
phytol degradation 4 3 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
TCA cycle VII (acetate-producers) 9 7 2
TCA cycle V (2-oxoglutarate synthase) 9 7 2
TCA cycle II (plants and fungi) 9 7 2
TCA cycle VI (Helicobacter) 9 7 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 6 2
sporopollenin precursors biosynthesis 18 4 4
TCA cycle I (prokaryotic) 10 9 2
glucose and glucose-1-phosphate degradation 5 4 1
octane oxidation 5 4 1
TCA cycle III (animals) 10 7 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
reductive TCA cycle I 11 6 2
fatty acid salvage 6 6 1
superpathway of glyoxylate bypass and TCA 12 11 2
glycogen degradation II 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
UDP-N-acetyl-D-glucosamine biosynthesis II 6 4 1
reductive TCA cycle II 12 5 2
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
methylaspartate cycle 19 10 3
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
UDP-N-acetyl-D-galactosamine biosynthesis II 7 5 1
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
ceramide degradation by α-oxidation 7 2 1
4-aminobutanoate degradation V 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 7 1
mixed acid fermentation 16 12 2
glycogen degradation I 8 6 1
sucrose biosynthesis II 8 6 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
chitin biosynthesis 9 5 1
1,3-propanediol biosynthesis (engineered) 9 4 1
peptidoglycan recycling II 10 8 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 2
glycolysis III (from glucose) 11 9 1
homolactic fermentation 12 9 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
peptidoglycan recycling I 14 11 1
Bifidobacterium shunt 15 12 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
heterolactic fermentation 18 14 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 30 1