Experiment set2IT088 for Escherichia coli BW25113

Compare to:

LB with 1-ethyl-3-methylimidazolium chloride 80 mM

Group: stress
Media: LB + 1-ethyl-3-methylimidazolium chloride (80 mM)
Culturing: Keio_ML9, 48 well microplate; Tecan Infinite F200, Aerobic, at 28 (C), shaken=orbital
By: Kelly on 6/30/2014
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 963 E1,E2

Specific Phenotypes

For 29 genes in this experiment

For stress 1-ethyl-3-methylimidazolium chloride in Escherichia coli BW25113

For stress 1-ethyl-3-methylimidazolium chloride across organisms

SEED Subsystems

Subsystem #Specific
Selenocysteine metabolism 3
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 2
Beta-Glucoside Metabolism 1
CBSS-562.2.peg.5158 SK3 including 1
DNA repair, bacterial 1
Deoxyribose and Deoxynucleoside Catabolism 1
Formate dehydrogenase 1
Formate hydrogenase 1
Multidrug Resistance Efflux Pumps 1
Polyamine Metabolism 1
Protein degradation 1
Transport of Manganese 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
formate oxidation to CO2 1 1 1
cardiolipin biosynthesis I 3 3 2
L-selenocysteine biosynthesis I (bacteria) 3 3 2
cardiolipin biosynthesis II 3 3 2
neolinustatin bioactivation 3 2 2
siroheme biosynthesis 4 4 2
nitrate reduction III (dissimilatory) 2 2 1
formate to trimethylamine N-oxide electron transfer 2 2 1
pseudouridine degradation 2 2 1
formate to dimethyl sulfoxide electron transfer 2 2 1
linustatin bioactivation 4 2 2
linamarin degradation 2 1 1
lotaustralin degradation 2 1 1
spermine and spermidine degradation I 5 2 2
cardiolipin biosynthesis III 3 3 1
formate to nitrite electron transfer 3 2 1
cellulose degradation II (fungi) 3 2 1
factor 430 biosynthesis 7 3 2
heme b biosynthesis V (aerobic) 4 4 1
heme b biosynthesis I (aerobic) 4 4 1
heme b biosynthesis II (oxygen-independent) 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
oxalate degradation VI 4 2 1
L-selenocysteine biosynthesis II (archaea and eukaryotes) 4 2 1
putrescine degradation III 4 2 1
superpathway of cardiolipin biosynthesis (bacteria) 13 11 3
coumarin biosynthesis (via 2-coumarate) 5 2 1
oxalate degradation III 5 2 1
superpathway of phospholipid biosynthesis III (E. coli) 12 12 2
phosphatidylglycerol biosynthesis I 6 6 1
superpathway of heme b biosynthesis from uroporphyrinogen-III 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
α-tomatine degradation 6 1 1
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) 13 2 2
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) 15 3 2
superpathway of heme b biosynthesis from glycine 8 7 1
superpathway of heme b biosynthesis from glutamate 10 10 1
superpathway of C1 compounds oxidation to CO2 12 4 1
firefly bioluminescence 14 2 1
purine nucleobases degradation I (anaerobic) 15 6 1
adenosylcobalamin biosynthesis II (aerobic) 33 17 2
type I lipoteichoic acid biosynthesis (S. aureus) 17 5 1
adenosylcobalamin biosynthesis I (anaerobic) 36 16 2
purine nucleobases degradation II (anaerobic) 24 17 1
superpathway of phospholipid biosynthesis II (plants) 28 10 1