Experiment set2IT074 for Pseudomonas fluorescens GW456-L13

Compare to:

L-Tryptophan carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Tryptophan (12.5 mM), pH=7
Culturing: pseudo13_ML2, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
By: Mark on 3/10/2015
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 19 genes in this experiment

For carbon source L-Tryptophan in Pseudomonas fluorescens GW456-L13

For carbon source L-Tryptophan across organisms

SEED Subsystems

Subsystem #Specific
Aromatic amino acid degradation 2
Benzoate degradation 2
Catechol branch of beta-ketoadipate pathway 2
NAD and NADP cofactor biosynthesis global 2
Arginine and Ornithine Degradation 1
Branched-Chain Amino Acid Biosynthesis 1
Formate hydrogenase 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycine and Serine Utilization 1
Glycine cleavage system 1
Molybdenum cofactor biosynthesis 1
Multidrug Resistance Efflux Pumps 1
Photorespiration (oxidative C2 cycle) 1
Protocatechuate branch of beta-ketoadipate pathway 1
Sialic Acid Metabolism 1
Transport of Zinc 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
anthranilate degradation I (aerobic) 1 1 1
formate oxidation to CO2 1 1 1
L-tryptophan degradation I (via anthranilate) 3 3 2
catechol degradation III (ortho-cleavage pathway) 6 6 3
catechol degradation to β-ketoadipate 4 4 2
benzoate degradation I (aerobic) 2 2 1
3-oxoadipate degradation 2 2 1
superpathway of salicylate degradation 7 6 3
3-hydroxy-4-methyl-anthranilate biosynthesis II 5 3 2
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 5 3 2
aromatic compounds degradation via β-ketoadipate 9 9 3
glycine biosynthesis II 3 3 1
L-ornithine biosynthesis II 3 3 1
glycine cleavage 3 3 1
L-proline biosynthesis III (from L-ornithine) 3 3 1
glycine degradation 3 3 1
L-arginine degradation I (arginase pathway) 3 2 1
2-nitrobenzoate degradation II 3 2 1
4-methylcatechol degradation (ortho cleavage) 7 4 2
L-arginine degradation VI (arginase 2 pathway) 4 3 1
oxalate degradation VI 4 1 1
NAD de novo biosynthesis II (from tryptophan) 9 6 2
mandelate degradation to acetyl-CoA 18 10 4
L-arginine degradation II (AST pathway) 5 5 1
L-ornithine biosynthesis I 5 5 1
L-arginine degradation XIII (reductive Stickland reaction) 5 5 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 21 7
oxalate degradation III 5 1 1
L-tryptophan degradation IX 12 7 2
L-tryptophan degradation XII (Geobacillus) 12 7 2
3-hydroxy-4-methyl-anthranilate biosynthesis I 6 2 1
L-Nδ-acetylornithine biosynthesis 7 5 1
superpathway of NAD biosynthesis in eukaryotes 14 9 2
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
L-tryptophan degradation III (eukaryotic) 15 7 2
L-tryptophan degradation XI (mammalian, via kynurenine) 23 8 3
L-citrulline biosynthesis 8 7 1
3-hydroxyquinaldate biosynthesis 8 2 1
L-arginine biosynthesis I (via L-ornithine) 9 9 1
L-lysine biosynthesis I 9 9 1
folate transformations III (E. coli) 9 9 1
L-arginine biosynthesis III (via N-acetyl-L-citrulline) 9 8 1
photorespiration I 9 6 1
photorespiration III 9 5 1
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
photorespiration II 10 6 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
meta cleavage pathway of aromatic compounds 10 6 1
quinoxaline-2-carboxylate biosynthesis 10 4 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 15 4
folate transformations II (plants) 11 10 1
toluene degradation III (aerobic) (via p-cresol) 11 7 1
superpathway of L-citrulline metabolism 12 9 1
superpathway of C1 compounds oxidation to CO2 12 6 1
folate transformations I 13 9 1
toluene degradation IV (aerobic) (via catechol) 13 6 1
superpathway of aerobic toluene degradation 30 13 2
purine nucleobases degradation I (anaerobic) 15 6 1
superpathway of arginine and polyamine biosynthesis 17 16 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
purine nucleobases degradation II (anaerobic) 24 16 1
aspartate superpathway 25 22 1