Experiment set2IT070 for Pseudomonas sp. RS175

Compare to:

Betaine carbon source 2.5 mM

Group: carbon source
Media: MME_noCarbon + Betaine (2.5 mM), pH=7
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 7 genes in this experiment

For carbon source Betaine in Pseudomonas sp. RS175

For carbon source Betaine across organisms

SEED Subsystems

Subsystem #Specific
Phosphate metabolism 3
Molybdenum cofactor biosynthesis 2
Formate hydrogenase 1
Glycine and Serine Utilization 1
Pyruvate Alanine Serine Interconversions 1
Riboflavin, FMN and FAD metabolism 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
bis(guanylyl molybdenum cofactor) biosynthesis 2 2 2
formate oxidation to CO2 1 1 1
guanylyl molybdenum cofactor biosynthesis 1 1 1
bis(guanylyl tungstenpterin) cofactor biosynthesis 1 1 1
D-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
L-cysteine degradation II 3 2 2
glycine betaine degradation III 7 7 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 6 3
glycine degradation 3 3 1
L-methionine biosynthesis II 6 5 2
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 3 2
oxalate degradation VI 4 1 1
flavin biosynthesis I (bacteria and plants) 9 8 2
flavin biosynthesis III (fungi) 9 7 2
6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) 5 3 1
oxalate degradation III 5 1 1
purine nucleobases degradation II (anaerobic) 24 16 4
NAD(P)/NADPH interconversion 6 3 1
toxoflavin biosynthesis 7 3 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
flavin biosynthesis II (archaea) 10 5 1
superpathway of C1 compounds oxidation to CO2 12 5 1
purine nucleobases degradation I (anaerobic) 15 6 1