Experiment set2IT057 for Pseudomonas sp. RS175

Compare to:

Xanthosine carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + Xanthosine (10 mM), pH=7
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 11 genes in this experiment

For carbon source Xanthosine in Pseudomonas sp. RS175

For carbon source Xanthosine across organisms

SEED Subsystems

Subsystem #Specific
Purine Utilization 4
Transport of Zinc 2
Allantoin Utilization 1
Photorespiration (oxidative C2 cycle) 1
Purine conversions 1
Queuosine-Archaeosine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
guanosine nucleotides degradation II 4 4 2
UDP-α-D-glucose biosynthesis 2 2 1
guanine and guanosine salvage II 2 2 1
adenine and adenosine salvage II 2 2 1
adenosine nucleotides degradation I 8 7 4
superpathway of guanosine nucleotides degradation (plants) 6 5 3
guanosine nucleotides degradation I 4 3 2
purine nucleotides degradation I (plants) 12 10 5
adenosine nucleotides degradation II 5 5 2
trehalose degradation V 3 2 1
GDP-α-D-glucose biosynthesis 3 2 1
superpathway of purines degradation in plants 18 14 5
glycolate and glyoxylate degradation I 4 4 1
guanosine nucleotides degradation III 4 4 1
inosine 5'-phosphate degradation 4 4 1
sucrose degradation IV (sucrose phosphorylase) 4 3 1
starch degradation V 4 3 1
glycogen biosynthesis I (from ADP-D-Glucose) 4 3 1
starch degradation III 4 2 1
D-erythronate degradation II 4 1 1
L-threonate degradation 4 1 1
dTDP-β-L-rhamnose biosynthesis 5 5 1
glucose and glucose-1-phosphate degradation 5 4 1
sucrose degradation II (sucrose synthase) 5 4 1
CDP-6-deoxy-D-gulose biosynthesis 5 3 1
D-galactose degradation I (Leloir pathway) 5 3 1
glucosylglycerol biosynthesis 5 2 1
purine nucleotides degradation II (aerobic) 11 11 2
glycogen degradation II 6 5 1
purine nucleobases degradation II (anaerobic) 24 16 4
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis 6 4 1
ureide biosynthesis 7 6 1
superpathway of glycol metabolism and degradation 7 6 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
glycogen degradation I 8 7 1
sucrose biosynthesis II 8 6 1
glycogen biosynthesis III (from α-maltose 1-phosphate) 8 3 1
sucrose biosynthesis I (from photosynthesis) 9 7 1
chitin biosynthesis 9 6 1
theophylline degradation 9 1 1
starch biosynthesis 10 5 1
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
O-antigen building blocks biosynthesis (E. coli) 11 10 1
colanic acid building blocks biosynthesis 11 9 1
streptomycin biosynthesis 18 3 1
superpathway of anaerobic sucrose degradation 19 15 1
superpathway of dTDP-glucose-derived O-antigen building blocks biosynthesis 19 6 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 12 1