Experiment set2IT056 for Agrobacterium fabrum C58

Compare to:

D-Saccharic acid potassium salt carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + D-Saccharic acid potassium salt (5 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 10/20/20
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 39 genes in this experiment

For carbon source D-Saccharic acid potassium salt in Agrobacterium fabrum C58

For carbon source D-Saccharic acid potassium salt across organisms

SEED Subsystems

Subsystem #Specific
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 3
Ammonia assimilation 2
D-Galacturonate and D-Glucuronate Utilization 2
Branched-Chain Amino Acid Biosynthesis 1
Chitin and N-acetylglucosamine utilization 1
Choline and Betaine Uptake and Betaine Biosynthesis 1
D-Sorbitol(D-Glucitol) and L-Sorbose Utilization 1
D-galactarate, D-glucarate and D-glycerate catabolism 1
D-ribose utilization 1
Deoxyribose and Deoxynucleoside Catabolism 1
Glutamine synthetases 1
Histidine Degradation 1
Homogentisate pathway of aromatic compound degradation 1
Inositol catabolism 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Peptidoglycan Biosynthesis 1
Proline, 4-hydroxyproline uptake and utilization 1
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 1
Terminal cytochrome C oxidases 1
Threonine and Homoserine Biosynthesis 1
Valine degradation 1
Xylose utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
phosphatidylcholine biosynthesis V 3 3 3
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
L-asparagine degradation I 1 1 1
L-glutamine biosynthesis I 1 1 1
L-aspartate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
D-galactarate degradation II 3 3 2
D-glucarate degradation II 3 3 2
L-asparagine degradation III (mammalian) 3 2 2
malate/L-aspartate shuttle pathway 2 2 1
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 1
ammonia assimilation cycle I 2 2 1
L-glutamate degradation II 2 2 1
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 1
D-galactose degradation II 2 2 1
choline degradation I 2 2 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 2
ammonia assimilation cycle II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
atromentin biosynthesis 2 1 1
pyruvate fermentation to acetate VIII 2 1 1
L-tyrosine degradation II 2 1 1
arsenite to oxygen electron transfer 2 1 1
D-glucuronate degradation II 5 5 2
D-galacturonate degradation II 5 5 2
phosphatidylcholine biosynthesis III 5 2 2
benzoyl-CoA biosynthesis 3 3 1
L-phenylalanine biosynthesis I 3 3 1
ammonia assimilation cycle III 3 3 1
choline-O-sulfate degradation 3 3 1
L-tyrosine biosynthesis I 3 3 1
L-carnitine degradation II 3 2 1
superpathway of ammonia assimilation (plants) 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
L-aspartate degradation III (anaerobic) 3 2 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
(R)-cysteate degradation 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
sulfolactate degradation III 3 1 1
L-lyxonate degradation 3 1 1
L-phenylalanine degradation II (anaerobic) 3 1 1
L-valine biosynthesis 4 4 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 6 2
aerobic respiration I (cytochrome c) 4 3 1
1,2-dichloroethane degradation 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
trans-4-hydroxy-L-proline degradation II 4 2 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
2-methyl-branched fatty acid β-oxidation 14 9 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
cytosolic NADPH production (yeast) 5 4 1
propanoyl-CoA degradation II 5 3 1
L-tyrosine degradation I 5 3 1
mitochondrial NADPH production (yeast) 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
acrylate degradation I 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
D-xylose degradation V 5 2 1
fatty acid β-oxidation IV (unsaturated, even number) 5 2 1
N-(1-deoxy-D-fructos-1-yl)-L-asparagine degradation 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
D-xylose degradation III 5 2 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
myo-inositol degradation II 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
phosphatidylcholine biosynthesis IV 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
superpathway of L-threonine biosynthesis 6 6 1
TCA cycle VIII (Chlamydia) 6 6 1
β-alanine biosynthesis II 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
D-arabinose degradation III 6 3 1
L-isoleucine biosynthesis IV 6 3 1
L-arabinose degradation III 6 2 1
Fe(II) oxidation 6 2 1
superpathway of phosphatidylcholine biosynthesis 12 2 2
superpathway of sulfolactate degradation 6 1 1
coenzyme M biosynthesis II 6 1 1
superpathway of L-isoleucine biosynthesis I 13 13 2
L-isoleucine biosynthesis I (from threonine) 7 7 1
myo-inositol degradation I 7 6 1
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
fatty acid β-oxidation I (generic) 7 4 1
L-isoleucine biosynthesis III 7 4 1
L-glutamate and L-glutamine biosynthesis 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-valine degradation I 8 5 1
L-isoleucine biosynthesis II 8 5 1
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of aromatic amino acid biosynthesis 18 18 2
superpathway of L-methionine biosynthesis (transsulfuration) 9 8 1
valproate β-oxidation 9 5 1
phenylacetate degradation I (aerobic) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 2 1
L-arginine biosynthesis II (acetyl cycle) 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of coenzyme A biosynthesis II (plants) 10 7 1
myo-, chiro- and scyllo-inositol degradation 10 6 1
3-phenylpropanoate degradation 10 4 1
rosmarinic acid biosynthesis I 10 2 1
superpathway of phenylethylamine degradation 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
(S)-reticuline biosynthesis I 11 1 1
oleate β-oxidation 35 27 3
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
indole-3-acetate biosynthesis II 12 3 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
superpathway of phospholipid biosynthesis II (plants) 28 12 2
superpathway of rosmarinic acid biosynthesis 14 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 22 2
superpathway of anaerobic energy metabolism (invertebrates) 17 13 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 17 1
superpathway of L-threonine metabolism 18 11 1
streptomycin biosynthesis 18 3 1
superpathway of pentose and pentitol degradation 42 16 2
aspartate superpathway 25 24 1
platensimycin biosynthesis 26 6 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 1 1
superpathway of chorismate metabolism 59 38 2
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1