Experiment set2IT050 for Pseudomonas sp. RS175

Compare to:

Sodium octanoate carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + Sodium octanoate (10 mM), pH=7
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 11 genes in this experiment

For carbon source Sodium octanoate in Pseudomonas sp. RS175

For carbon source Sodium octanoate across organisms

SEED Subsystems

Subsystem #Specific
Biotin biosynthesis 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Multidrug Resistance Efflux Pumps 1
Polyhydroxybutyrate metabolism 1
Ton and Tol transport systems 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
fatty acid salvage 6 6 3
acetoacetate degradation (to acetyl CoA) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
oleate β-oxidation 35 30 12
ketolysis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
polyhydroxydecanoate biosynthesis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
2-methyl-branched fatty acid β-oxidation 14 10 4
phytol degradation 4 3 1
2-deoxy-D-ribose degradation II 8 4 2
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
wax esters biosynthesis II 4 1 1
valproate β-oxidation 9 6 2
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
octane oxidation 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
stearate biosynthesis II (bacteria and plants) 6 5 1
L-isoleucine degradation I 6 4 1
stearate biosynthesis IV 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
4-ethylphenol degradation (anaerobic) 6 1 1
stearate biosynthesis I (animals) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
capsaicin biosynthesis 7 4 1
pyruvate fermentation to butanoate 7 3 1
acetyl-CoA fermentation to butanoate 7 3 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
pyruvate fermentation to butanol I 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 1 1
superpathway of testosterone and androsterone degradation 28 6 3
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
3-phenylpropanoate degradation 10 3 1
methyl tert-butyl ether degradation 10 2 1
suberin monomers biosynthesis 20 3 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of fatty acid biosynthesis II (plant) 43 38 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
cutin biosynthesis 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 3 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
1-butanol autotrophic biosynthesis (engineered) 27 20 1
palmitate biosynthesis III 29 28 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 18 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1