Experiment set2IT049 for Pseudomonas sp. RS175

Compare to:

Sodium octanoate carbon source 10 mM

Group: carbon source
Media: MME_noCarbon + Sodium octanoate (10 mM), pH=7
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 7 genes in this experiment

For carbon source Sodium octanoate in Pseudomonas sp. RS175

For carbon source Sodium octanoate across organisms

SEED Subsystems

Subsystem #Specific
Biotin biosynthesis 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
fatty acid salvage 6 6 3
acetoacetate degradation (to acetyl CoA) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
oleate β-oxidation 35 30 12
ketolysis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
2-methyl-branched fatty acid β-oxidation 14 10 4
phytol degradation 4 3 1
2-deoxy-D-ribose degradation II 8 4 2
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
valproate β-oxidation 9 6 2
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
octane oxidation 5 4 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to acetone 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
stearate biosynthesis II (bacteria and plants) 6 5 1
L-isoleucine degradation I 6 4 1
stearate biosynthesis IV 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
stearate biosynthesis I (animals) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
jasmonic acid biosynthesis 19 4 3
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
capsaicin biosynthesis 7 4 1
pyruvate fermentation to butanoate 7 3 1
acetyl-CoA fermentation to butanoate 7 3 1
ceramide degradation by α-oxidation 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
pyruvate fermentation to butanol I 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 1 1
superpathway of testosterone and androsterone degradation 28 6 3
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
suberin monomers biosynthesis 20 3 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of fatty acid biosynthesis II (plant) 43 38 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
cutin biosynthesis 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 3 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
1-butanol autotrophic biosynthesis (engineered) 27 20 1
palmitate biosynthesis III 29 28 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 18 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1