Experiment set2IT049 for Agrobacterium fabrum C58

Compare to:

L-Sorbose carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + L-(-)-sorbose (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 10/20/20
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 27 genes in this experiment

For carbon source L-(-)-sorbose in Agrobacterium fabrum C58

For carbon source L-(-)-sorbose across organisms

SEED Subsystems

Subsystem #Specific
Alanine biosynthesis 1
Bacterial Cell Division 1
Biogenesis of cytochrome c oxidases 1
Biotin biosynthesis 1
Chitin and N-acetylglucosamine utilization 1
Choline and Betaine Uptake and Betaine Biosynthesis 1
Fructose utilization 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Heat shock dnaK gene cluster extended 1
NAD regulation 1
Oxidative stress 1
Pyrimidine utilization 1
Respiratory dehydrogenases 1 1
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 1
Rrf2 family transcriptional regulators 1
Terminal cytochrome C oxidases 1
Transport of Zinc 1
Xylose utilization 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
phosphatidylcholine biosynthesis V 3 3 3
L-cysteine degradation IV 1 1 1
L-alanine biosynthesis III 1 1 1
long-chain fatty acid activation 1 1 1
choline degradation I 2 2 1
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 1
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 1
trehalose degradation VI (periplasmic) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
cytidylyl molybdenum cofactor sulfurylation 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
arsenite to oxygen electron transfer 2 1 1
phosphatidylcholine biosynthesis III 5 2 2
choline-O-sulfate degradation 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
arsenite to oxygen electron transfer (via azurin) 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
bis(guanylyl molybdopterin) cofactor sulfurylation 3 1 1
thiazole component of thiamine diphosphate biosynthesis II 7 4 2
superpathway of L-alanine biosynthesis 4 4 1
aerobic respiration I (cytochrome c) 4 3 1
phytol degradation 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
tRNA-uridine 2-thiolation (mammalian mitochondria) 4 1 1
tRNA-uridine 2-thiolation (yeast mitochondria) 4 1 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
chorismate biosynthesis from 3-dehydroquinate 5 5 1
D-galactose degradation I (Leloir pathway) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
tRNA-uridine 2-thiolation (thermophilic bacteria) 5 2 1
octane oxidation 5 2 1
[2Fe-2S] iron-sulfur cluster biosynthesis 10 2 2
phosphatidylcholine biosynthesis IV 5 1 1
dibenzothiophene desulfurization 5 1 1
superpathway of thiamine diphosphate biosynthesis II 11 7 2
adenosylcobinamide-GDP biosynthesis from cobyrinate a,c-diamide 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
molybdopterin biosynthesis 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
Fe(II) oxidation 6 2 1
thiazole component of thiamine diphosphate biosynthesis I 6 2 1
superpathway of phosphatidylcholine biosynthesis 12 2 2
stearate biosynthesis I (animals) 6 1 1
chorismate biosynthesis I 7 7 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
bacterial bioluminescence 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
tRNA-uridine 2-thiolation (cytoplasmic) 8 1 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of thiamine diphosphate biosynthesis I 10 5 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
tRNA-uridine 2-thiolation and selenation (bacteria) 11 2 1
chorismate biosynthesis II (archaea) 12 8 1
superpathway of L-tryptophan biosynthesis 13 13 1
superpathway of phospholipid biosynthesis II (plants) 28 12 2
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of aromatic amino acid biosynthesis 18 18 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
palmitate biosynthesis III 29 28 1
adenosylcobalamin biosynthesis II (aerobic) 33 29 1
oleate β-oxidation 35 27 1
adenosylcobalamin biosynthesis I (anaerobic) 36 26 1
superpathway of chorismate metabolism 59 38 1