Experiment set2IT049 for Agrobacterium fabrum C58

Compare to:

L-Sorbose carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + L-(-)-sorbose (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 10/20/20
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 28 genes in this experiment

For carbon source L-(-)-sorbose in Agrobacterium fabrum C58

For carbon source L-(-)-sorbose across organisms

SEED Subsystems

Subsystem #Specific
Alanine biosynthesis 1
Bacterial Cell Division 1
Biogenesis of cytochrome c oxidases 1
Biotin biosynthesis 1
Chitin and N-acetylglucosamine utilization 1
Choline and Betaine Uptake and Betaine Biosynthesis 1
Fructose utilization 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Heat shock dnaK gene cluster extended 1
NAD regulation 1
Oxidative stress 1
Pyrimidine utilization 1
Respiratory dehydrogenases 1 1
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 1
Rrf2 family transcriptional regulators 1
Terminal cytochrome C oxidases 1
Transport of Zinc 1
Xylose utilization 1
YcfH 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
phosphatidylcholine biosynthesis V 3 3 3
L-cysteine degradation IV 1 1 1
long-chain fatty acid activation 1 1 1
L-alanine biosynthesis III 1 1 1
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 1
choline degradation I 2 2 1
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 1
γ-linolenate biosynthesis II (animals) 2 1 1
cytidylyl molybdenum cofactor sulfurylation 2 1 1
arsenite to oxygen electron transfer 2 1 1
trehalose degradation VI (periplasmic) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
phosphatidylcholine biosynthesis III 5 2 2
choline-O-sulfate degradation 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
bis(guanylyl molybdopterin) cofactor sulfurylation 3 1 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
thiazole component of thiamine diphosphate biosynthesis II 7 4 2
superpathway of L-alanine biosynthesis 4 4 1
phytol degradation 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
phosphatidylcholine acyl editing 4 1 1
tRNA-uridine 2-thiolation (yeast mitochondria) 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
tRNA-uridine 2-thiolation (mammalian mitochondria) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
chorismate biosynthesis from 3-dehydroquinate 5 5 1
D-galactose degradation I (Leloir pathway) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
tRNA-uridine 2-thiolation (thermophilic bacteria) 5 2 1
octane oxidation 5 2 1
[2Fe-2S] iron-sulfur cluster biosynthesis 10 2 2
phosphatidylcholine biosynthesis IV 5 1 1
dibenzothiophene desulfurization 5 1 1
superpathway of thiamine diphosphate biosynthesis II 11 7 2
adenosylcobinamide-GDP biosynthesis from cobyrinate a,c-diamide 6 6 1
fatty acid salvage 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
Fe(II) oxidation 6 2 1
thiazole component of thiamine diphosphate biosynthesis I 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
molybdopterin biosynthesis 6 2 1
superpathway of phosphatidylcholine biosynthesis 12 2 2
stearate biosynthesis I (animals) 6 1 1
chorismate biosynthesis I 7 7 1
ceramide degradation by α-oxidation 7 2 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
bacterial bioluminescence 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
tRNA-uridine 2-thiolation (cytoplasmic) 8 1 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of thiamine diphosphate biosynthesis I 10 5 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
tRNA-uridine 2-thiolation and selenation (bacteria) 11 2 1
chorismate biosynthesis II (archaea) 12 8 1
superpathway of L-tryptophan biosynthesis 13 13 1
superpathway of phospholipid biosynthesis II (plants) 28 12 2
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of aromatic amino acid biosynthesis 18 18 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
palmitate biosynthesis III 29 28 1
adenosylcobalamin biosynthesis II (aerobic) 33 29 1
oleate β-oxidation 35 27 1
adenosylcobalamin biosynthesis I (anaerobic) 36 26 1
superpathway of chorismate metabolism 59 38 1