Experiment set2IT046 for Escherichia coli BW25113

Compare to:

LB with Benzalkonium Chloride 0.004 mg/ml

Group: stress
Media: LB + Benzalkonium Chloride (0.004 mg/ml)
Culturing: Keio_ML9, 48 well microplate; Tecan Infinite F200, Aerobic, at 28 (C), shaken=orbital
By: Kelly on 6/30/2014
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 961 A7,A8

Specific Phenotypes

For 89 genes in this experiment

For stress Benzalkonium Chloride in Escherichia coli BW25113

For stress Benzalkonium Chloride across organisms

SEED Subsystems

Subsystem #Specific
Formate hydrogenase 4
LOS core oligosaccharide biosynthesis 4
Glycine and Serine Utilization 3
Glycogen metabolism 3
Oxidative stress 3
Rhamnose containing glycans 3
Selenocysteine metabolism 3
dTDP-rhamnose synthesis 3
linker unit-arabinogalactan synthesis 3
Capsular heptose biosynthesis 2
Deoxyribose and Deoxynucleoside Catabolism 2
Folate Biosynthesis 2
Formate dehydrogenase 2
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 2
KDO2-Lipid A biosynthesis 2
Maltose and Maltodextrin Utilization 2
Na(+)-translocating NADH-quinone oxidoreductase and rnf-like group of electron transport complexes 2
Pyruvate Alanine Serine Interconversions 2
Threonine anaerobic catabolism gene cluster 2
ATP-dependent RNA helicases, bacterial 1
Adenosyl nucleosidases 1
Biotin biosynthesis 1
Fructose utilization 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Glycine Biosynthesis 1
Hexose Phosphate Uptake System 1
High affinity phosphate transporter and control of PHO regulon 1
Lipid A modifications 1
Molybdenum cofactor biosynthesis 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Pentose phosphate pathway 1
Peptidoglycan Biosynthesis 1
Phosphate metabolism 1
Protein degradation 1
Purine conversions 1
Threonine degradation 1
Transcription initiation, bacterial sigma factors 1
Trehalose Biosynthesis 1
Type IV pilus 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
formate oxidation to CO2 1 1 1
long-chain fatty acid activation 1 1 1
purine ribonucleosides degradation 6 6 5
purine deoxyribonucleosides degradation I 4 4 3
purine deoxyribonucleosides degradation II 3 3 2
L-selenocysteine biosynthesis I (bacteria) 3 3 2
glycogen degradation I 8 8 5
dTDP-β-L-rhamnose biosynthesis 5 5 3
superpathway of purine deoxyribonucleosides degradation 7 7 4
siroheme biosynthesis 4 4 2
adenine and adenosine salvage III 4 4 2
polyphosphate metabolism 2 2 1
guanine and guanosine salvage I 2 2 1
nitrate reduction III (dissimilatory) 2 2 1
adenine and adenosine salvage I 2 2 1
pseudouridine degradation 2 2 1
xanthine and xanthosine salvage 2 2 1
di-trans,poly-cis-undecaprenyl phosphate biosynthesis 2 2 1
formate to dimethyl sulfoxide electron transfer 2 2 1
L-threonine degradation II 2 2 1
formate to trimethylamine N-oxide electron transfer 2 2 1
starch degradation V 4 3 2
cinnamoyl-CoA biosynthesis 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
pyrimidine deoxyribonucleosides salvage 5 4 2
dTDP-4-O-demethyl-β-L-noviose biosynthesis 5 3 2
superpathway of pyrimidine deoxyribonucleosides degradation 6 6 2
NAD salvage pathway III (to nicotinamide riboside) 3 3 1
L-aspartate degradation II (aerobic) 3 3 1
pyrimidine deoxyribonucleosides degradation 3 3 1
2-deoxy-α-D-ribose 1-phosphate degradation 3 3 1
L-aspartate degradation III (anaerobic) 3 3 1
adenine and adenosine salvage V 3 3 1
cardiolipin biosynthesis I 3 3 1
cardiolipin biosynthesis II 3 3 1
superpathway of guanine and guanosine salvage 3 3 1
glycogen degradation II 6 4 2
formate to nitrite electron transfer 3 2 1
dTDP-L-daunosamine biosynthesis 6 3 2
dTDP-sibirosamine biosynthesis 6 3 2
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
factor 430 biosynthesis 7 3 2
O-antigen building blocks biosynthesis (E. coli) 11 11 3
purine nucleotides degradation II (aerobic) 11 11 3
guanosine nucleotides degradation III 4 4 1
dTDP-N-acetylthomosamine biosynthesis 4 4 1
inosine 5'-phosphate degradation 4 4 1
sucrose biosynthesis II 8 6 2
phytol degradation 4 3 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 6 3
starch degradation III 4 2 1
dTDP-N-acetylviosamine biosynthesis 4 2 1
oxalate degradation VI 4 2 1
dTDP-6-deoxy-α-D-allose biosynthesis 4 2 1
phosphatidylcholine acyl editing 4 2 1
L-selenocysteine biosynthesis II (archaea and eukaryotes) 4 2 1
dTDP-β-D-fucofuranose biosynthesis 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
GDP-D-glycero-α-D-manno-heptose biosynthesis 4 1 1
pinosylvin metabolism 4 1 1
wax esters biosynthesis II 4 1 1
superpathway of pyrimidine deoxyribonucleoside salvage 9 8 2
sporopollenin precursors biosynthesis 18 5 4
ADP-L-glycero-β-D-manno-heptose biosynthesis 5 5 1
polyisoprenoid biosynthesis (E. coli) 5 5 1
pentose phosphate pathway (non-oxidative branch) I 5 5 1
CMP-3-deoxy-D-manno-octulosonate biosynthesis 5 5 1
adenosine nucleotides degradation II 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
NAD salvage pathway II (PNC IV cycle) 5 4 1
Kdo transfer to lipid IVA (Chlamydia) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
nucleoside and nucleotide degradation (archaea) 10 4 2
octane oxidation 5 2 1
dTDP-α-D-mycaminose biosynthesis 5 2 1
oxalate degradation III 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
dTDP-3-acetamido-3,6-dideoxy-α-D-glucose biosynthesis 5 2 1
dTDP-3-acetamido-α-D-fucose biosynthesis 5 2 1
molybdopterin biosynthesis 6 6 1
ppGpp metabolism 6 6 1
fatty acid salvage 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
nucleoside and nucleotide degradation (halobacteria) 6 3 1
dTDP-D-desosamine biosynthesis 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
dTDP-α-D-ravidosamine and dTDP-4-acetyl-α-D-ravidosamine biosynthesis 6 2 1
fluoroacetate and fluorothreonine biosynthesis 6 1 1
stearate biosynthesis I (animals) 6 1 1
superpathway of dTDP-glucose-derived O-antigen building blocks biosynthesis 19 7 3
superpathway of cardiolipin biosynthesis (bacteria) 13 11 2
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) 13 2 2
superpathway of purine nucleotide salvage 14 13 2
ureide biosynthesis 7 5 1
NAD salvage pathway I (PNC VI cycle) 7 5 1
CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis 7 4 1
dTDP-β-L-digitoxose biosynthesis 7 3 1
dTDP-β-L-olivose biosynthesis 7 3 1
dTDP-β-L-mycarose biosynthesis 7 2 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) 15 3 2
pentose phosphate pathway 8 8 1
dTDP-β-L-megosamine biosynthesis 8 3 1
dTDP-β-L-4-epi-vancosamine biosynthesis 8 3 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 7 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
dTDP-α-D-forosamine biosynthesis 9 3 1
dTDP-α-D-olivose, dTDP-α-D-oliose and dTDP-α-D-mycarose biosynthesis 9 3 1
starch degradation II 9 1 1
superpathway of novobiocin biosynthesis 19 4 2
lipid A-core biosynthesis (E. coli K-12) 10 9 1
superpathway of enterobacterial common antigen biosynthesis 10 9 1
Rubisco shunt 10 9 1
lipid A-core biosynthesis (Salmonella) 10 8 1
peptidoglycan recycling II 10 7 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
NAD salvage (plants) 11 5 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 14 3
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
superpathway of phospholipid biosynthesis III (E. coli) 12 12 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
superpathway of C1 compounds oxidation to CO2 12 4 1
superpathway of Kdo2-lipid A biosynthesis 25 24 2
peptidoglycan recycling I 14 14 1
Bifidobacterium shunt 15 13 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
purine nucleobases degradation I (anaerobic) 15 6 1
salinosporamide A biosynthesis 15 3 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
adenosylcobalamin biosynthesis II (aerobic) 33 17 2
superpathway of glucose and xylose degradation 17 17 1
superpathway of (Kdo)2-lipid A biosynthesis 17 17 1
arsenic detoxification (mammals) 17 8 1
superpathway of L-threonine metabolism 18 16 1
adenosylcobalamin biosynthesis I (anaerobic) 36 16 2
superpathway of erythromycin biosynthesis 19 2 1
superpathway of megalomicin A biosynthesis 22 3 1
superpathway of dTDP-glucose-derived antibiotic building blocks biosynthesis 23 3 1
purine nucleobases degradation II (anaerobic) 24 17 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1