Experiment set2IT040 for Agrobacterium fabrum C58

Compare to:

L-Galactose carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + L-Galactose (10 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 10/20/20
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 10 genes in this experiment

For carbon source L-Galactose in Agrobacterium fabrum C58

For carbon source L-Galactose across organisms

SEED Subsystems

Subsystem #Specific
D-Galacturonate and D-Glucuronate Utilization 2
Bacterial Chemotaxis 1
Biotin biosynthesis 1
D-gluconate and ketogluconates metabolism 1
D-ribose utilization 1
Entner-Doudoroff Pathway 1
L-fucose utilization temp 1
Threonine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
D-galacturonate degradation I 5 3 2
D-galactarate degradation II 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
D-fructuronate degradation 4 4 1
phytol degradation 4 3 1
D-galactarate degradation I 4 2 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
4-deoxy-L-threo-hex-4-enopyranuronate degradation 5 5 1
superpathway of hexuronide and hexuronate degradation 10 6 2
superpathway of D-glucarate and D-galactarate degradation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
fatty acid salvage 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
superpathway of β-D-glucuronosides degradation 7 5 1
alginate degradation 7 4 1
3,6-anhydro-α-L-galactopyranose degradation 7 4 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
Entner-Doudoroff pathway III (semi-phosphorylative) 9 7 1
suberin monomers biosynthesis 20 3 2
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 22 3
superpathway of fatty acid biosynthesis II (plant) 43 38 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
palmitate biosynthesis III 29 28 1
oleate β-oxidation 35 27 1