Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
Pathway | #Steps | #Present | #Specific |
3-oxoadipate degradation | 2 | 2 | 2 |
long-chain fatty acid activation | 1 | 1 | 1 |
protocatechuate degradation II (ortho-cleavage pathway) | 4 | 4 | 3 |
aromatic compounds degradation via β-ketoadipate | 9 | 8 | 5 |
catechol degradation III (ortho-cleavage pathway) | 6 | 5 | 3 |
acetoacetate degradation (to acetyl CoA) | 2 | 1 | 1 |
linoleate biosynthesis II (animals) | 2 | 1 | 1 |
γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
toluene degradation III (aerobic) (via p-cresol) | 11 | 7 | 5 |
superpathway of salicylate degradation | 7 | 6 | 3 |
4-methylcatechol degradation (ortho cleavage) | 7 | 3 | 3 |
chorismate biosynthesis from 3-dehydroquinate | 5 | 5 | 2 |
adipate degradation | 5 | 5 | 2 |
adipate biosynthesis | 5 | 4 | 2 |
5,6-dehydrokavain biosynthesis (engineered) | 10 | 6 | 4 |
benzoyl-CoA biosynthesis | 3 | 3 | 1 |
fatty acid salvage | 6 | 5 | 2 |
ketolysis | 3 | 2 | 1 |
gallate biosynthesis | 3 | 2 | 1 |
polyhydroxybutanoate biosynthesis | 3 | 2 | 1 |
quinate degradation I | 3 | 2 | 1 |
3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
plastoquinol-9 biosynthesis I | 3 | 1 | 1 |
quinate degradation II | 3 | 1 | 1 |
alkane biosynthesis II | 3 | 1 | 1 |
oleate biosynthesis I (plants) | 3 | 1 | 1 |
chorismate biosynthesis I | 7 | 7 | 2 |
oleate β-oxidation | 35 | 27 | 9 |
catechol degradation to β-ketoadipate | 4 | 3 | 1 |
phytol degradation | 4 | 3 | 1 |
4-sulfocatechol degradation | 4 | 2 | 1 |
(2S)-ethylmalonyl-CoA biosynthesis | 4 | 2 | 1 |
2-deoxy-D-ribose degradation II | 8 | 2 | 2 |
long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
wax esters biosynthesis II | 4 | 1 | 1 |
phosphatidylcholine acyl editing | 4 | 1 | 1 |
valproate β-oxidation | 9 | 5 | 2 |
sporopollenin precursors biosynthesis | 18 | 4 | 4 |
2-methyl-branched fatty acid β-oxidation | 14 | 9 | 3 |
superpathway of L-tyrosine biosynthesis | 10 | 10 | 2 |
superpathway of L-phenylalanine biosynthesis | 10 | 10 | 2 |
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 5 | 1 |
glutaryl-CoA degradation | 5 | 3 | 1 |
4-hydroxybenzoate biosynthesis III (plants) | 5 | 3 | 1 |
fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 1 |
L-tyrosine degradation I | 5 | 3 | 1 |
ketogenesis | 5 | 3 | 1 |
sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
superpathway of plastoquinol biosynthesis | 5 | 2 | 1 |
octane oxidation | 5 | 2 | 1 |
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 2 | 2 |
ethylbenzene degradation (anaerobic) | 5 | 1 | 1 |
fatty acid β-oxidation VII (yeast peroxisome) | 5 | 1 | 1 |
pyruvate fermentation to acetone | 5 | 1 | 1 |
isopropanol biosynthesis (engineered) | 5 | 1 | 1 |
pyruvate fermentation to hexanol (engineered) | 11 | 7 | 2 |
superpathway of aromatic compound degradation via 3-oxoadipate | 35 | 15 | 6 |
stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
chorismate biosynthesis II (archaea) | 12 | 8 | 2 |
pyruvate fermentation to butanol II (engineered) | 6 | 4 | 1 |
L-isoleucine degradation I | 6 | 4 | 1 |
stearate biosynthesis IV | 6 | 4 | 1 |
propanoate fermentation to 2-methylbutanoate | 6 | 3 | 1 |
mandelate degradation to acetyl-CoA | 18 | 8 | 3 |
superpathway of aerobic toluene degradation | 30 | 12 | 5 |
4-ethylphenol degradation (anaerobic) | 6 | 2 | 1 |
6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
stearate biosynthesis I (animals) | 6 | 1 | 1 |
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) | 6 | 1 | 1 |
jasmonic acid biosynthesis | 19 | 4 | 3 |
superpathway of L-tryptophan biosynthesis | 13 | 13 | 2 |
fatty acid β-oxidation I (generic) | 7 | 4 | 1 |
fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 1 |
benzoyl-CoA degradation I (aerobic) | 7 | 3 | 1 |
pyruvate fermentation to butanoate | 7 | 3 | 1 |
ceramide degradation by α-oxidation | 7 | 2 | 1 |
acetyl-CoA fermentation to butanoate | 7 | 2 | 1 |
capsaicin biosynthesis | 7 | 1 | 1 |
arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
mevalonate pathway II (haloarchaea) | 7 | 1 | 1 |
icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
mevalonate pathway I (eukaryotes and bacteria) | 7 | 1 | 1 |
icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
vitamin E biosynthesis (tocopherols) | 7 | 1 | 1 |
pyruvate fermentation to butanol I | 8 | 4 | 1 |
2-methylpropene degradation | 8 | 3 | 1 |
ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
mevalonate pathway IV (archaea) | 8 | 1 | 1 |
mevalonate pathway III (Thermoplasma) | 8 | 1 | 1 |
isoprene biosynthesis II (engineered) | 8 | 1 | 1 |
androstenedione degradation I (aerobic) | 25 | 6 | 3 |
superpathway of aromatic amino acid biosynthesis | 18 | 18 | 2 |
phenylacetate degradation I (aerobic) | 9 | 3 | 1 |
superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 3 | 1 |
benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 1 |
L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 2 | 1 |
4-oxopentanoate degradation | 9 | 2 | 1 |
superpathway of testosterone and androsterone degradation | 28 | 6 | 3 |
L-glutamate degradation V (via hydroxyglutarate) | 10 | 4 | 1 |
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) | 10 | 4 | 1 |
3-phenylpropanoate degradation | 10 | 4 | 1 |
methyl tert-butyl ether degradation | 10 | 3 | 1 |
L-lysine fermentation to acetate and butanoate | 10 | 2 | 1 |
suberin monomers biosynthesis | 20 | 3 | 2 |
superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 4 |
superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 4 |
(8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 1 |
ethylmalonyl-CoA pathway | 11 | 3 | 1 |
superpathway of phenylethylamine degradation | 11 | 3 | 1 |
superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 8 | 4 |
L-glutamate degradation VII (to butanoate) | 12 | 4 | 1 |
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 1 | 1 |
10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 1 | 1 |
superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 5 | 1 |
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
superpathway of glyoxylate cycle and fatty acid degradation | 14 | 12 | 1 |
docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
L-tryptophan degradation III (eukaryotic) | 15 | 4 | 1 |
palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
glycerol degradation to butanol | 16 | 11 | 1 |
crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 3 | 1 |
cutin biosynthesis | 16 | 1 | 1 |
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 5 | 1 |
benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 3 | 1 |
cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 11 | 1 |
toluene degradation VI (anaerobic) | 18 | 3 | 1 |
sitosterol degradation to androstenedione | 18 | 1 | 1 |
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 2 | 1 |
superpathway of cholesterol degradation III (oxidase) | 49 | 4 | 2 |
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 19 | 1 |
platensimycin biosynthesis | 26 | 6 | 1 |
superpathway of ergosterol biosynthesis I | 26 | 3 | 1 |
superpathway of fatty acids biosynthesis (E. coli) | 53 | 49 | 2 |
1-butanol autotrophic biosynthesis (engineered) | 27 | 18 | 1 |
palmitate biosynthesis III | 29 | 28 | 1 |
superpathway of chorismate metabolism | 59 | 38 | 2 |
superpathway of cholesterol biosynthesis | 38 | 3 | 1 |
superpathway of aromatic compound degradation via 2-hydroxypentadienoate | 42 | 11 | 1 |
superpathway of L-lysine degradation | 43 | 10 | 1 |
Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 18 | 1 |