Experiment set29S182 for Pseudomonas simiae WCS417

Compare to:

LB_noSalt with Sodium Chloride 1100 mM

Group: stress
Media: LB_noSalt + Sodium Chloride (1100 mM)
Culturing: WCS417_ML3b, tube, Aerobic, at 30 (C), shaken=180 rpm
By: Marta Torres on 18-Dec-23
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract

Specific Phenotypes

For 9 genes in this experiment

For stress Sodium Chloride in Pseudomonas simiae WCS417

For stress Sodium Chloride across organisms

SEED Subsystems

Subsystem #Specific
Choline and Betaine Uptake and Betaine Biosynthesis 3
Cyanophycin Metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Isoleucine degradation 1
Nitrate and nitrite ammonification 1
Polyhydroxybutyrate metabolism 1
Proline, 4-hydroxyproline uptake and utilization 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamine degradation I 1 1 1
L-asparagine biosynthesis I 1 1 1
cyanophycin metabolism 6 5 4
L-glutamate biosynthesis I 2 2 1
N-acetylglutaminylglutamine amide biosynthesis 2 1 1
superpathway of L-asparagine biosynthesis 2 1 1
4-coumarate degradation (aerobic) 5 3 2
ammonia assimilation cycle III 3 3 1
benzoyl-CoA biosynthesis 3 3 1
4-coumarate degradation (anaerobic) 6 2 2
L-asparagine biosynthesis III (tRNA-dependent) 4 4 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 4 1
2-methyl-branched fatty acid β-oxidation 14 11 3
adipate degradation 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
nitrate reduction I (denitrification) 5 2 1
nitrate reduction VII (denitrification) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 30 6
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
L-glutamate and L-glutamine biosynthesis 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-citrulline biosynthesis 8 8 1
L-valine degradation I 8 6 1
pyruvate fermentation to butanol I 8 3 1
valproate β-oxidation 9 7 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
phenylacetate degradation I (aerobic) 9 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 3 1
superpathway of phenylethylamine degradation 11 4 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
superpathway of L-citrulline metabolism 12 10 1
L-glutamate degradation VII (to butanoate) 12 3 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 6 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1