Experiment set29IT070 for Pseudomonas putida KT2440

Compare to:

rac-3-Hydroxypentanoic Acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + rac-3-Hydroxypentanoic Acid (10 mM)
Culturing: Putida_ML5_JBEI, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Matthias Schmidt on 4/13/21
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 8 genes in this experiment

For carbon source rac-3-Hydroxypentanoic Acid in Pseudomonas putida KT2440

For carbon source rac-3-Hydroxypentanoic Acid across organisms

SEED Subsystems

Subsystem #Specific
Glutathione-dependent pathway of formaldehyde detoxification 3
Catechol branch of beta-ketoadipate pathway 2
Leucine Degradation and HMG-CoA Metabolism 2
Protocatechuate branch of beta-ketoadipate pathway 2
Serine-glyoxylate cycle 2

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetaldehyde biosynthesis I 1 1 1
formaldehyde oxidation II (glutathione-dependent) 3 3 2
pyruvate fermentation to ethanol II 2 1 1
ethanol degradation I 2 1 1
ethanol degradation II 3 3 1
ketolysis 3 3 1
methylglyoxal degradation I 3 2 1
L-isoleucine degradation II 3 2 1
L-leucine degradation III 3 2 1
methylglyoxal degradation VIII 3 2 1
L-valine degradation II 3 2 1
pyruvate fermentation to ethanol III 3 1 1
pyruvate fermentation to ethanol I 3 1 1
L-methionine degradation III 3 1 1
phytol degradation 4 3 1
salidroside biosynthesis 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
ethanolamine utilization 5 4 1
protein S-nitrosylation and denitrosylation 5 3 1
phenylethanol biosynthesis 5 3 1
acetylene degradation (anaerobic) 5 3 1
(S)-propane-1,2-diol degradation 5 2 1
superpathway of C1 compounds oxidation to CO2 12 5 2
noradrenaline and adrenaline degradation 13 8 2
3-methylbutanol biosynthesis (engineered) 7 6 1
serotonin degradation 7 4 1
superpathway of methylglyoxal degradation 8 5 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
TCA cycle VI (Helicobacter) 9 7 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
L-tryptophan degradation V (side chain pathway) 13 1 1
mixed acid fermentation 16 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
heterolactic fermentation 18 12 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1