Experiment set29IT063 for Pseudomonas putida KT2440

Compare to:

Mucic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Mucic acid (10 mM)
Culturing: Putida_ML5_JBEI, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Matthias Schmidt on 4/13/21
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 7 genes in this experiment

For carbon source Mucic acid in Pseudomonas putida KT2440

For carbon source Mucic acid across organisms

SEED Subsystems

Subsystem #Specific
D-Galacturonate and D-Glucuronate Utilization 3
D-galactarate, D-glucarate and D-glycerate catabolism 3
Proline, 4-hydroxyproline uptake and utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
D-galactarate degradation II 3 3 3
D-glucarate degradation II 3 3 2
D-glucuronate degradation II 5 4 2
D-galacturonate degradation II 5 3 2
L-lyxonate degradation 3 1 1
trans-4-hydroxy-L-proline degradation II 4 4 1
D-galactarate degradation I 4 3 1
superpathway of D-glucarate and D-galactarate degradation 5 4 1
D-xylose degradation III 5 1 1
D-xylose degradation V 5 1 1
D-arabinose degradation III 6 3 1
L-arabinose degradation III 6 2 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 13 3
superpathway of pentose and pentitol degradation 42 10 2