Experiment set27IT069 for Pseudomonas putida KT2440

Compare to:

L-Leucine nitrogen source

Group: nitrogen source
Media: MOPS minimal media_Glucose_noNitrogen + L-Leucine (10 mM)
Culturing: Putida_ML5_JBEI, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Mitchell Thompson on 11/8/20
Media components: 10 mM D-Glucose, 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 17 genes in this experiment

For nitrogen source L-Leucine in Pseudomonas putida KT2440

For nitrogen source L-Leucine across organisms

SEED Subsystems

Subsystem #Specific
Arginine and Ornithine Degradation 2
Respiratory dehydrogenases 1 2
Ammonia assimilation 1
Bacterial Chemotaxis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
HMG CoA Synthesis 1
Leucine Degradation and HMG-CoA Metabolism 1
Peptidoglycan Biosynthesis 1
Proline, 4-hydroxyproline uptake and utilization 1
Pyruvate Alanine Serine Interconversions 1
Serine-glyoxylate cycle 1
Type IV pilus 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamate biosynthesis I 2 2 2
L-alanine biosynthesis II 1 1 1
L-glutamine degradation I 1 1 1
L-alanine degradation III 1 1 1
L-glutamine degradation II 1 1 1
L-proline degradation I 3 3 2
ammonia assimilation cycle III 3 3 2
L-alanine degradation V (oxidative Stickland reaction) 2 1 1
L-alanine degradation II (to D-lactate) 3 3 1
L-arginine degradation I (arginase pathway) 3 2 1
pyruvate fermentation to acetate and alanine 3 1 1
L-glutamate and L-glutamine biosynthesis 7 6 2
superpathway of L-alanine biosynthesis 4 4 1
L-asparagine biosynthesis III (tRNA-dependent) 4 4 1
L-citrulline biosynthesis 8 7 2
glutaminyl-tRNAgln biosynthesis via transamidation 4 3 1
ethene biosynthesis II (microbes) 4 1 1
L-arginine degradation II (AST pathway) 5 5 1
L-leucine degradation I 6 5 1
superpathway of L-citrulline metabolism 12 9 2
L-alanine degradation VI (reductive Stickland reaction) 6 2 1
(5R)-carbapenem carboxylate biosynthesis 6 1 1
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
L-Nδ-acetylornithine biosynthesis 7 5 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
L-lysine degradation V 9 9 1
superpathway of L-alanine fermentation (Stickland reaction) 9 4 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 1
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
superpathway of anaerobic energy metabolism (invertebrates) 17 10 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1