Experiment set24S533 for Agrobacterium fabrum C58

Compare to:

LB with Chloramphenicol 12.5 ug/mL

Group: stress
Media: LB + Chloramphenicol (12.5 ug/mL)
Culturing: Agro_ML11b, 24_well_plate, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 4/26/2025
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 45 genes in this experiment

For stress Chloramphenicol in Agrobacterium fabrum C58

For stress Chloramphenicol across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance Efflux Pumps 4
Multidrug efflux pump in Campylobacter jejuni (CmeABC operon) 3
Peptidoglycan Biosynthesis 3
Conserved gene cluster associated with Met-tRNA formyltransferase 2
Experimental tye 2
Heme and Siroheme Biosynthesis 2
Acetyl-CoA fermentation to Butyrate 1
Bacterial RNA-metabolizing Zn-dependent hydrolases 1
Butanol Biosynthesis 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Glycine and Serine Utilization 1
Polyhydroxybutyrate metabolism 1
Pyruvate Alanine Serine Interconversions 1
Ribosome biogenesis bacterial 1
Transport of Manganese 1
ZZ gjo need homes 1
cAMP signaling in bacteria 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
L-glutamate degradation I 1 1 1
cis-cyclopropane fatty acid (CFA) biosynthesis 1 1 1
D-serine degradation 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
L-cysteine degradation II 3 2 2
glycerophosphodiester degradation 2 2 1
acetoacetate degradation (to acetyl CoA) 2 1 1
phosphatidylcholine resynthesis via glycerophosphocholine 2 1 1
sterculate biosynthesis 2 1 1
glycine betaine degradation III 7 4 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 6 3
L-alanine degradation II (to D-lactate) 3 3 1
benzoyl-CoA biosynthesis 3 3 1
glycine degradation 3 3 1
L-methionine biosynthesis II 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
ketolysis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
ethene biosynthesis IV (engineered) 3 1 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 3
pyruvate fermentation to butanoate 7 3 2
pyruvate fermentation to hexanol (engineered) 11 7 3
oleate β-oxidation 35 27 9
heme b biosynthesis II (oxygen-independent) 4 3 1
glycerol and glycerophosphodiester degradation 4 3 1
L-mimosine degradation 8 4 2
pyruvate fermentation to butanol I 8 4 2
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 2 1
glutathione-mediated detoxification I 8 3 2
2-methylpropene degradation 8 3 2
valproate β-oxidation 9 5 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 2
2-methyl-branched fatty acid β-oxidation 14 9 3
tRNA processing 10 10 2
ketogenesis 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
methyl tert-butyl ether degradation 10 3 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
pyruvate fermentation to acetone 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
tetrapyrrole biosynthesis I (from glutamate) 6 5 1
fatty acid salvage 6 5 1
L-isoleucine degradation I 6 4 1
superpathway of heme b biosynthesis from uroporphyrinogen-III 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
L-glutamate degradation VII (to butanoate) 12 4 2
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
fatty acid β-oxidation I (generic) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
4-aminobutanoate degradation V 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-glutamate degradation XI (reductive Stickland reaction) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
L-tryptophan degradation III (eukaryotic) 15 4 2
glycerol degradation to butanol 16 11 2
purine nucleobases degradation II (anaerobic) 24 14 3
2-deoxy-D-ribose degradation II 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic) 9 2 1
4-oxopentanoate degradation 9 2 1
toluene degradation VI (anaerobic) 18 3 2
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of heme b biosynthesis from glutamate 10 8 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
anandamide biosynthesis I 12 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
sitosterol degradation to androstenedione 18 1 1
methylaspartate cycle 19 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
superpathway of bacteriochlorophyll a biosynthesis 26 6 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
adenosylcobalamin biosynthesis II (aerobic) 33 29 1
adenosylcobalamin biosynthesis I (anaerobic) 36 26 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1
mycolate biosynthesis 205 21 3
superpathway of mycolate biosynthesis 239 22 3