Experiment set22IT001 for Pseudomonas putida KT2440

Compare to:

Sodium ferulate carbon source; with MOPS

Group: carbon source
Media: soilextract_PNNL_Prosser_PlotA_B_20191220 + Sodium ferulate (10 mM) + Ammonium chloride (10 mM) + 3-(N-morpholino)propanesulfonic acid (40 mM), pH=7
Culturing: Putida_ML5_PNNL, 96 deep-well microplate; 1 mL volume, Aerobic, at 30 (C)
By: Joshua Elmore on 1/6/20

Specific Phenotypes

For 33 genes in this experiment

For carbon source Sodium ferulate in Pseudomonas putida KT2440

For carbon source Sodium ferulate across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 8
Chloroaromatic degradation pathway 3
Catechol branch of beta-ketoadipate pathway 2
Phenylpropanoid compound degradation 2
Alginate metabolism 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Lipid A modifications 1
Mannose Metabolism 1
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Multidrug Resistance Efflux Pumps 1
One-carbon metabolism by tetrahydropterines 1
Polyamine Metabolism 1
Pyruvate Alanine Serine Interconversions 1
Thiamin biosynthesis 1
Ton and Tol transport systems 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
ferulate degradation 3 3 3
3-oxoadipate degradation 2 2 2
acetaldehyde biosynthesis I 1 1 1
glyphosate degradation II 1 1 1
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
trans-caffeate degradation (aerobic) 4 3 3
benzoyl-CoA biosynthesis 3 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 3
4-coumarate degradation (aerobic) 5 4 3
aromatic compounds degradation via β-ketoadipate 9 9 5
catechol degradation III (ortho-cleavage pathway) 6 6 3
β-alanine degradation II 2 2 1
vanillin and vanillate degradation II 2 2 1
4-coumarate degradation (anaerobic) 6 3 3
pyruvate fermentation to ethanol II 2 1 1
D-mannose degradation I 2 1 1
ethanol degradation I 2 1 1
D-mannose degradation II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
toluene degradation III (aerobic) (via p-cresol) 11 7 5
superpathway of salicylate degradation 7 7 3
2-methyl-branched fatty acid β-oxidation 14 10 6
4-methylcatechol degradation (ortho cleavage) 7 5 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
fatty acid β-oxidation II (plant peroxisome) 5 3 2
ketolysis 3 3 1
formaldehyde oxidation II (glutathione-dependent) 3 3 1
ethanol degradation II 3 3 1
valproate β-oxidation 9 7 3
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation 3 2 1
L-valine degradation II 3 2 1
umbelliferone biosynthesis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
pyruvate fermentation to ethanol I 3 1 1
caffeoylglucarate biosynthesis 3 1 1
mannitol biosynthesis 3 1 1
pyruvate fermentation to ethanol III 3 1 1
L-methionine degradation III 3 1 1
oleate β-oxidation 35 30 11
fatty acid β-oxidation I (generic) 7 5 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
capsaicin biosynthesis 7 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 3
catechol degradation to β-ketoadipate 4 4 1
formaldehyde oxidation VII (THF pathway) 4 4 1
GDP-mannose biosynthesis 4 4 1
salidroside biosynthesis 4 3 1
phytol degradation 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
L-phenylalanine degradation III 4 2 1
4-sulfocatechol degradation 4 2 1
L-tyrosine degradation III 4 2 1
mannitol degradation II 4 2 1
butanol and isobutanol biosynthesis (engineered) 8 3 2
xanthohumol biosynthesis 4 1 1
hydroxycinnamate sugar acid ester biosynthesis 4 1 1
naringenin biosynthesis (engineered) 4 1 1
phenylacetate degradation I (aerobic) 9 9 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
ethanolamine utilization 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
gallate degradation II 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
protein S-nitrosylation and denitrosylation 5 3 1
glutaryl-CoA degradation 5 3 1
ketogenesis 5 3 1
acetylene degradation (anaerobic) 5 3 1
phenylethanol biosynthesis 5 3 1
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
(S)-propane-1,2-diol degradation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
1,5-anhydrofructose degradation 5 2 1
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
ethylbenzene degradation (anaerobic) 5 1 1
chlorogenic acid biosynthesis II 5 1 1
flavonoid biosynthesis 5 1 1
phaselate biosynthesis 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
superpathway of phenylethylamine degradation 11 11 2
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
β-alanine biosynthesis II 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
mandelate degradation to acetyl-CoA 18 11 3
6-gingerol analog biosynthesis (engineered) 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
superpathway of aerobic toluene degradation 30 13 5
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
noradrenaline and adrenaline degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
coumarins biosynthesis (engineered) 13 4 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
3-methylbutanol biosynthesis (engineered) 7 6 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
serotonin degradation 7 4 1
thiazole component of thiamine diphosphate biosynthesis II 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 5
pyruvate fermentation to butanoate 7 3 1
β-(1,4)-mannan degradation 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
chlorogenic acid biosynthesis I 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
4-oxopentanoate degradation 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
avenanthramide biosynthesis 9 1 1
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
suberin monomers biosynthesis 20 4 2
rosmarinic acid biosynthesis I 10 2 1
methyl tert-butyl ether degradation 10 2 1
curcuminoid biosynthesis 10 1 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
colanic acid building blocks biosynthesis 11 9 1
superpathway of thiamine diphosphate biosynthesis II 11 8 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of C1 compounds oxidation to CO2 12 5 1
L-glutamate degradation VII (to butanoate) 12 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
folate transformations I 13 9 1
platensimycin biosynthesis 26 6 2
Amaryllidacea alkaloids biosynthesis 26 3 2
L-tryptophan degradation V (side chain pathway) 13 1 1
androstenedione degradation II (anaerobic) 27 5 2
superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis 14 7 1
superpathway of rosmarinic acid biosynthesis 14 2 1
purine nucleobases degradation I (anaerobic) 15 6 1
flavonoid di-C-glucosylation 15 3 1
L-tryptophan degradation III (eukaryotic) 15 3 1
monolignol biosynthesis 15 1 1
mixed acid fermentation 16 12 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
heterolactic fermentation 18 12 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
purine nucleobases degradation II (anaerobic) 24 16 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1