Experiment set1S350 for Bacteroides ovatus ATCC 8483

Compare to:

D-Galactose 10 mM carbon source

Group: carbon source
Media: Varel_Bryant_medium + D-Galactose (10 mM)
Culturing: Bovatus_ATCC8483_ML6, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Surya on 10/30/24
Media components: 15 uM Hemin, 134 uM L-Methionine, 15 uM Iron (II) sulfate heptahydrate, 8.25 mM L-Cysteine, 23.8 mM Sodium bicarbonate, Mineral 3B solution (6.6 mM Potassium phosphate monobasic, 15.4 mM Sodium Chloride, 98 uM Magnesium chloride hexahydrate, 176.5 uM Calcium chloride dihydrate, 4.2 uM Cobalt chloride hexahydrate, 50.5 uM Manganese (II) chloride tetrahydrate, 9.3 mM Ammonium chloride, 1.75 mM Sodium sulfate)

Specific Phenotypes

For 26 genes in this experiment

For carbon source D-Galactose in Bacteroides ovatus ATCC 8483

For carbon source D-Galactose across organisms

SEED Subsystems

Subsystem #Specific
Maltose and Maltodextrin Utilization 2
Phosphate metabolism 2
Campylobacter Iron Metabolism 1
De Novo Pyrimidine Synthesis 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Glycine reductase, sarcosine reductase and betaine reductase 1
Glycogen metabolism 1
LMPTP YwlE cluster 1
Trehalose Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA III 1 1 1
long-chain fatty acid activation 1 1 1
pyrimidine nucleobases salvage I 1 1 1
acetate conversion to acetyl-CoA 1 1 1
NAD salvage pathway IV (from nicotinamide riboside) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
phosphatidylcholine resynthesis via glycerophosphocholine 2 1 1
linoleate biosynthesis II (animals) 2 1 1
glycerophosphodiester degradation 2 1 1
pyrimidine nucleobases salvage II 2 1 1
superpathway of acetate utilization and formation 3 3 1
ethanol degradation IV 3 2 1
ethanol degradation II 3 2 1
L-isoleucine biosynthesis V 3 2 1
3-methyl-branched fatty acid α-oxidation 6 2 2
alkane biosynthesis II 3 1 1
ethanol degradation III 3 1 1
oleate biosynthesis I (plants) 3 1 1
superpathway of pyrimidine nucleobases salvage 4 4 1
starch degradation V 4 3 1
phytol degradation 4 2 1
chitin deacetylation 4 1 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 1 1
wax esters biosynthesis II 4 1 1
glycerol and glycerophosphodiester degradation 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
sphingosine and sphingosine-1-phosphate metabolism 10 2 2
octane oxidation 5 1 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
fatty acid salvage 6 2 1
superpathway of bitter acids biosynthesis 18 3 3
lupulone and humulone biosynthesis 6 1 1
colupulone and cohumulone biosynthesis 6 1 1
stearate biosynthesis I (animals) 6 1 1
adlupulone and adhumulone biosynthesis 6 1 1
6-gingerol analog biosynthesis (engineered) 6 1 1
ceramide degradation by α-oxidation 7 1 1
capsaicin biosynthesis 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
glycogen degradation I 8 7 1
sucrose biosynthesis II 8 5 1
ceramide and sphingolipid recycling and degradation (yeast) 16 2 2
reductive glycine pathway of autotrophic CO2 fixation 9 7 1
starch degradation II 9 1 1
cis-geranyl-CoA degradation 9 1 1
superpathway of pyrimidine ribonucleosides salvage 10 9 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 37 4
anandamide biosynthesis I 12 2 1
superpathway of NAD biosynthesis in eukaryotes 14 6 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 47 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 4 1