Experiment set1S302 for Acinetobacter radioresistens SK82

Compare to:

L-tyrosine disodium salt carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-tyrosine disodium salt (20 mM)
Culturing: Acinetobacter_SK82_ML3, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Kiani on 5/1/24
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 8 genes in this experiment

For carbon source L-tyrosine disodium salt in Acinetobacter radioresistens SK82

For carbon source L-tyrosine disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Cysteine Biosynthesis 1
DNA-binding regulatory proteins, strays 1
DNA-replication 1
DNA Repair Base Excision 1
DNA repair, bacterial RecFOR pathway 1
Ketoisovalerate oxidoreductase 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA III 1 1 1
acetate conversion to acetyl-CoA 1 1 1
L-malate degradation I 1 1 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
superpathway of acetate utilization and formation 3 3 1
benzoyl-CoA biosynthesis 3 3 1
ethanol degradation IV 3 3 1
ethanol degradation II 3 3 1
L-isoleucine biosynthesis V 3 2 1
ethanol degradation III 3 2 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 2
oleate β-oxidation 35 32 9
chitin deacetylation 4 3 1
valproate β-oxidation 9 5 2
adipate degradation 5 5 1
2-methylcitrate cycle I 5 5 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
pyruvate fermentation to hexanol (engineered) 11 7 2
fatty acid salvage 6 6 1
2-methylcitrate cycle II 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine biosynthesis IV 6 4 1
β-alanine biosynthesis II 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
methylgallate degradation 6 2 1
superpathway of bitter acids biosynthesis 18 3 3
lupulone and humulone biosynthesis 6 1 1
colupulone and cohumulone biosynthesis 6 1 1
adlupulone and adhumulone biosynthesis 6 1 1
fatty acid β-oxidation I (generic) 7 6 1
2-methyl-branched fatty acid β-oxidation 14 10 2
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
pyruvate fermentation to butanol I 8 4 1
protocatechuate degradation I (meta-cleavage pathway) 8 3 1
2-methylpropene degradation 8 2 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 3
phenylacetate degradation I (aerobic) 9 7 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
cis-geranyl-CoA degradation 9 1 1
superpathway of coenzyme A biosynthesis II (plants) 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 3 1
superpathway of vanillin and vanillate degradation 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of phenylethylamine degradation 11 8 1
L-glutamate degradation VII (to butanoate) 12 3 1
syringate degradation 12 3 1
androstenedione degradation I (aerobic) 25 8 2
gluconeogenesis I 13 12 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
superpathway of testosterone and androsterone degradation 28 8 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 10 3
L-tryptophan degradation III (eukaryotic) 15 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 11 3
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 9 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 1
toluene degradation VI (anaerobic) 18 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 18 1