Experiment set1S301 for Acinetobacter radioresistens SK82

Compare to:

L-tyrosine disodium salt carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-tyrosine disodium salt (20 mM)
Culturing: Acinetobacter_SK82_ML3, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Kiani on 5/1/24
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 11 genes in this experiment

For carbon source L-tyrosine disodium salt in Acinetobacter radioresistens SK82

For carbon source L-tyrosine disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Ethanolamine utilization 2
Fermentations: Lactate 2
Fermentations: Mixed acid 2
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
Threonine anaerobic catabolism gene cluster 2
Cysteine Biosynthesis 1
DNA-binding regulatory proteins, strays 1
DNA-replication 1
DNA Repair Base Excision 1
DNA repair, bacterial RecFOR pathway 1
MLST 1
Propanediol utilization 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA I 2 2 2
L-malate degradation I 1 1 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 4
pyruvate fermentation to acetate II 3 3 2
benzoyl-CoA biosynthesis 3 3 2
superpathway of acetate utilization and formation 3 3 2
pyruvate fermentation to acetate I 3 2 2
pyruvate fermentation to acetate IV 3 2 2
pyruvate fermentation to acetate VII 3 2 2
acetoacetate degradation (to acetyl CoA) 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
pyruvate fermentation to acetate and (S)-lactate I 4 3 2
pyruvate fermentation to acetate and lactate II 4 2 2
glycine degradation (reductive Stickland reaction) 2 1 1
sulfoacetaldehyde degradation I 2 1 1
oleate β-oxidation 35 32 17
valproate β-oxidation 9 5 4
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 4
acetyl-CoA fermentation to butanoate 7 5 3
ethanolamine utilization 5 5 2
(S)-propane-1,2-diol degradation 5 4 2
acetylene degradation (anaerobic) 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
2-methyl-branched fatty acid β-oxidation 14 10 5
fatty acid salvage 6 6 2
L-threonine degradation I 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
ketolysis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
methanogenesis from acetate 6 2 2
L-lysine fermentation to acetate and butanoate 10 3 3
fatty acid β-oxidation I (generic) 7 6 2
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 2
pyruvate fermentation to butanoate 7 3 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 4 2
pyruvate fermentation to butanol I 8 4 2
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
2-methylpropene degradation 8 2 2
sulfolactate degradation II 4 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 9 4
superpathway of fermentation (Chlamydomonas reinhardtii) 9 6 2
superpathway of L-alanine fermentation (Stickland reaction) 9 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
pyruvate fermentation to acetone 5 2 1
ketogenesis 5 2 1
androstenedione degradation I (aerobic) 25 8 5
3-phenylpropanoate degradation 10 3 2
methyl tert-butyl ether degradation 10 2 2
isopropanol biosynthesis (engineered) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
gallate degradation III (anaerobic) 11 5 2
superpathway of testosterone and androsterone degradation 28 8 5
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
methylgallate degradation 6 2 1
superpathway of sulfolactate degradation 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 10 7
4-ethylphenol degradation (anaerobic) 6 1 1
superpathway of taurine degradation 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 4
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 2
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 5 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 11 7
androstenedione degradation II (anaerobic) 27 4 4
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
benzoyl-CoA degradation I (aerobic) 7 3 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 3 2
mixed acid fermentation 16 12 2
glycerol degradation to butanol 16 9 2
2-deoxy-D-ribose degradation II 8 3 1
protocatechuate degradation I (meta-cleavage pathway) 8 3 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
phenylacetate degradation I (aerobic) 9 7 1
superpathway of L-threonine metabolism 18 11 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
toluene degradation VI (anaerobic) 18 3 2
4-oxopentanoate degradation 9 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 12 2
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
superpathway of vanillin and vanillate degradation 10 3 1
superpathway of methanogenesis 21 2 2
superpathway of phenylethylamine degradation 11 8 1
superpathway of N-acetylneuraminate degradation 22 12 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 1
ethylmalonyl-CoA pathway 11 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 2
purine nucleobases degradation II (anaerobic) 24 10 2
syringate degradation 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 4
gluconeogenesis I 13 12 1
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of L-lysine degradation 43 10 3
Bifidobacterium shunt 15 10 1
purine nucleobases degradation I (anaerobic) 15 5 1
heterolactic fermentation 18 9 1
sitosterol degradation to androstenedione 18 1 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of cholesterol biosynthesis 38 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1