Experiment set1IT090 for Variovorax sp. OAS795

Compare to:

L-Tryptophan carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Tryptophan (5 mM)
Culturing: Variovorax_OAS795_ML2, 96 deep-well microplate; 0.8 mL volume, Aerobic, at 30 (C), shaken=700 rpm
By: Marta on 10-Apr-21
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 8 genes in this experiment

For carbon source L-Tryptophan in Variovorax sp. OAS795

For carbon source L-Tryptophan across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 2
Butanol Biosynthesis 2
Isoleucine degradation 2
NAD and NADP cofactor biosynthesis global 2
Polyhydroxybutyrate metabolism 2
Valine degradation 2
Anaerobic respiratory reductases 1
Aromatic amino acid degradation 1
Isobutyryl-CoA to Propionyl-CoA Module 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
anthranilate degradation II (aerobic) 2 2 2
L-tryptophan degradation I (via anthranilate) 3 3 2
anthranilate degradation III (anaerobic) 2 1 1
3-hydroxy-4-methyl-anthranilate biosynthesis II 5 3 2
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 5 3 2
benzoyl-CoA biosynthesis 3 3 1
ketolysis 3 3 1
pyruvate fermentation to butanol II (engineered) 6 4 2
pyruvate fermentation to hexanol (engineered) 11 7 3
NAD de novo biosynthesis II (from tryptophan) 9 7 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate biosynthesis 5 5 1
adipate degradation 5 5 1
ketogenesis 5 4 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
4-hydroxy-2(1H)-quinolone biosynthesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
L-tryptophan degradation III (eukaryotic) 15 7 3
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
aurachin RE biosynthesis 5 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 29 6
fatty acid salvage 6 5 1
L-tryptophan degradation IX 12 8 2
L-tryptophan degradation XII (Geobacillus) 12 8 2
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
3-hydroxy-4-methyl-anthranilate biosynthesis I 6 2 1
benzoyl-CoA degradation I (aerobic) 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
superpathway of NAD biosynthesis in eukaryotes 14 9 2
pyruvate fermentation to butanoate 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
L-tryptophan degradation XI (mammalian, via kynurenine) 23 8 3
L-valine degradation I 8 6 1
pyruvate fermentation to butanol I 8 3 1
3-hydroxyquinaldate biosynthesis 8 3 1
2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis 8 1 1
phenylacetate degradation I (aerobic) 9 8 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 5 1
valproate β-oxidation 9 5 1
benzoyl-CoA degradation III (anaerobic) 9 4 1
3-phenylpropanoate degradation 10 5 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
quinoxaline-2-carboxylate biosynthesis 10 4 1
superpathway of quinolone and alkylquinolone biosynthesis 10 3 1
superpathway of phenylethylamine degradation 11 9 1
gallate degradation III (anaerobic) 11 3 1
aurachin A, B, C and D biosynthesis 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
L-glutamate degradation VII (to butanoate) 12 5 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 20 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 5 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 25 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 4 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 22 2
platensimycin biosynthesis 26 6 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 7 1