L-Tryptophan carbon source
Group:
carbon source
Media:
RCH2_defined_noCarbon +
L-Tryptophan (5 mM)
Culturing: Variovorax_OAS795_ML2, 96 deep-well microplate; 0.8 mL volume, Aerobic, at 30 (C), shaken=700 rpm
By: Marta on
10-Apr-21
Media components: 0.25 g/L
Ammonium chloride, 0.1 g/L
Potassium Chloride, 0.6 g/L
Sodium phosphate monobasic monohydrate, 30 mM
PIPES sesquisodium salt, Wolfe's mineral mix
(0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix
(0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Specific Phenotypes
For 8 genes in this experiment
For carbon source L-Tryptophan in Variovorax sp. OAS795
For carbon source L-Tryptophan across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
Pathway | #Steps | #Present | #Specific |
anthranilate degradation II (aerobic) | 2 | 2 | 2 |
L-tryptophan degradation I (via anthranilate) | 3 | 3 | 2 |
anthranilate degradation III (anaerobic) | 2 | 1 | 1 |
3-hydroxy-4-methyl-anthranilate biosynthesis II | 5 | 3 | 2 |
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde | 5 | 3 | 2 |
benzoyl-CoA biosynthesis | 3 | 3 | 1 |
ketolysis | 3 | 3 | 1 |
pyruvate fermentation to butanol II (engineered) | 6 | 4 | 2 |
pyruvate fermentation to hexanol (engineered) | 11 | 7 | 3 |
NAD de novo biosynthesis II (from tryptophan) | 9 | 7 | 2 |
2-methyl-branched fatty acid β-oxidation | 14 | 10 | 3 |
adipate biosynthesis | 5 | 5 | 1 |
adipate degradation | 5 | 5 | 1 |
ketogenesis | 5 | 4 | 1 |
glutaryl-CoA degradation | 5 | 3 | 1 |
fatty acid β-oxidation IV (unsaturated, even number) | 5 | 3 | 1 |
4-hydroxy-2(1H)-quinolone biosynthesis | 5 | 3 | 1 |
fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 1 |
L-tryptophan degradation III (eukaryotic) | 15 | 7 | 3 |
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 2 | 1 |
aurachin RE biosynthesis | 5 | 1 | 1 |
(8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 2 |
oleate β-oxidation | 35 | 29 | 6 |
fatty acid salvage | 6 | 5 | 1 |
L-tryptophan degradation IX | 12 | 8 | 2 |
L-tryptophan degradation XII (Geobacillus) | 12 | 8 | 2 |
L-isoleucine degradation I | 6 | 4 | 1 |
propanoate fermentation to 2-methylbutanoate | 6 | 3 | 1 |
methyl ketone biosynthesis (engineered) | 6 | 3 | 1 |
3-hydroxy-4-methyl-anthranilate biosynthesis I | 6 | 2 | 1 |
benzoyl-CoA degradation I (aerobic) | 7 | 6 | 1 |
fatty acid β-oxidation I (generic) | 7 | 5 | 1 |
superpathway of NAD biosynthesis in eukaryotes | 14 | 9 | 2 |
pyruvate fermentation to butanoate | 7 | 4 | 1 |
fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 1 |
L-tryptophan degradation XI (mammalian, via kynurenine) | 23 | 8 | 3 |
L-valine degradation I | 8 | 6 | 1 |
pyruvate fermentation to butanol I | 8 | 3 | 1 |
3-hydroxyquinaldate biosynthesis | 8 | 3 | 1 |
2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis | 8 | 1 | 1 |
phenylacetate degradation I (aerobic) | 9 | 8 | 1 |
superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 6 | 1 |
benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 5 | 1 |
valproate β-oxidation | 9 | 5 | 1 |
benzoyl-CoA degradation III (anaerobic) | 9 | 4 | 1 |
3-phenylpropanoate degradation | 10 | 5 | 1 |
L-glutamate degradation V (via hydroxyglutarate) | 10 | 5 | 1 |
quinoxaline-2-carboxylate biosynthesis | 10 | 4 | 1 |
superpathway of quinolone and alkylquinolone biosynthesis | 10 | 3 | 1 |
superpathway of phenylethylamine degradation | 11 | 9 | 1 |
gallate degradation III (anaerobic) | 11 | 3 | 1 |
aurachin A, B, C and D biosynthesis | 11 | 3 | 1 |
Spodoptera littoralis pheromone biosynthesis | 22 | 4 | 2 |
L-glutamate degradation VII (to butanoate) | 12 | 5 | 1 |
superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 5 | 1 |
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
1-butanol autotrophic biosynthesis (engineered) | 27 | 20 | 2 |
superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 1 |
docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
glycerol degradation to butanol | 16 | 10 | 1 |
crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 4 | 1 |
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 8 | 1 |
benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 5 | 1 |
superpathway of aromatic compound degradation via 3-oxoadipate | 35 | 25 | 2 |
3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 11 | 1 |
toluene degradation VI (anaerobic) | 18 | 4 | 1 |
superpathway of aromatic compound degradation via 2-hydroxypentadienoate | 42 | 22 | 2 |
platensimycin biosynthesis | 26 | 6 | 1 |
anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 7 | 1 |