Experiment set1IT083 for Pseudomonas putida KT2440

Compare to:

4-Hydroxyvalerate carbon source (40mM)

Group: carbon source
Media: RCH2_defined_noCarbon + 4-Hydroxyvalerate (40 mM), pH=7
Culturing: Putida_ML5, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 3.9 generations
By: Kelly on 7/20/20
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 27 genes in this experiment

For carbon source 4-Hydroxyvalerate in Pseudomonas putida KT2440

For carbon source 4-Hydroxyvalerate across organisms

SEED Subsystems

Subsystem #Specific
Polyamine Metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Coenzyme A Biosynthesis 1
Cysteine Biosynthesis 1
DNA-replication 1
Glycine cleavage system 1
Glycogen metabolism 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
Maltose and Maltodextrin Utilization 1
Methionine Biosynthesis 1
Methylcitrate cycle 1
Orphan regulatory proteins 1
Polyhydroxybutyrate metabolism 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Universal stress protein family 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
thiosulfate disproportionation IV (rhodanese) 1 1 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 4
L-cysteine biosynthesis I 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
L-cysteine degradation III 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
glycogen degradation I 8 6 3
ketolysis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
glycogen degradation II 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
polyhydroxybutanoate biosynthesis 3 2 1
oleate β-oxidation 35 30 10
pyruvate fermentation to butanoate 7 3 2
pyruvate fermentation to hexanol (engineered) 11 8 3
phosphopantothenate biosynthesis I 4 4 1
starch degradation V 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
phosphopantothenate biosynthesis III (archaea) 4 2 1
starch degradation III 4 2 1
pyruvate fermentation to butanol I 8 3 2
2-methylpropene degradation 8 2 2
valproate β-oxidation 9 7 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
4-oxopentanoate degradation 9 5 2
2-methyl-branched fatty acid β-oxidation 14 10 3
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
seleno-amino acid biosynthesis (plants) 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
sulfide oxidation IV (mitochondria) 5 2 1
methyl tert-butyl ether degradation 10 2 2
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
4-ethylphenol degradation (anaerobic) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
hydrogen sulfide biosynthesis II (mammalian) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 4
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
fatty acid β-oxidation I (generic) 7 5 1
acetyl-CoA fermentation to butanoate 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 3 2
sucrose biosynthesis II 8 6 1
glycerol degradation to butanol 16 9 2
2-deoxy-D-ribose degradation II 8 4 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
superpathway of sulfate assimilation and cysteine biosynthesis 9 9 1
superpathway of coenzyme A biosynthesis I (bacteria) 9 8 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
toluene degradation VI (anaerobic) 18 4 2
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
glycolysis V (Pyrococcus) 10 7 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
glycolysis II (from fructose 6-phosphate) 11 9 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
gluconeogenesis I 13 11 1
glycolysis I (from glucose 6-phosphate) 13 10 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of hexitol degradation (bacteria) 18 13 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
sitosterol degradation to androstenedione 18 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of seleno-compound metabolism 19 8 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 2
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1