Experiment set1IT078 for Variovorax sp. OAS795

Compare to:

Tween 20 carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Tween 20 (1 vol%)
Culturing: Variovorax_OAS795_ML2, 96 deep-well microplate; 0.8 mL volume, Aerobic, at 30 (C), shaken=700 rpm
By: Marta on 10-Apr-21
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 21 genes in this experiment

For carbon source Tween 20 in Variovorax sp. OAS795

For carbon source Tween 20 across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance Efflux Pumps 3
Multidrug efflux pump in Campylobacter jejuni (CmeABC operon) 3
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Carboxysome 1
Histidine Biosynthesis 1
Hydantoin metabolism 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Respiratory dehydrogenases 1 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
long-chain fatty acid activation 1 1 1
benzoyl-CoA biosynthesis 3 3 2
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 12 6
gondoate biosynthesis (anaerobic) 4 4 2
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
NADH to cytochrome bo oxidase electron transfer I 2 2 1
stearate biosynthesis II (bacteria and plants) 6 5 3
fatty acid salvage 6 5 3
stearate biosynthesis IV 6 4 3
linoleate biosynthesis II (animals) 2 1 1
NADH to cytochrome bd oxidase electron transfer I 2 1 1
L-tyrosine degradation II 2 1 1
atromentin biosynthesis 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
oleate β-oxidation 35 29 17
palmitate biosynthesis II (type II fatty acid synthase) 31 29 15
palmitate biosynthesis III 29 28 14
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 4
superpathway of fatty acid biosynthesis II (plant) 43 38 19
tetradecanoate biosynthesis (mitochondria) 25 23 11
oleate biosynthesis IV (anaerobic) 14 13 6
fatty acid β-oxidation I (generic) 7 5 3
superpathway of fatty acids biosynthesis (E. coli) 53 48 22
adipate degradation 5 5 2
fatty acid elongation -- saturated 5 5 2
adipate biosynthesis 5 5 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
8-amino-7-oxononanoate biosynthesis I 11 9 4
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 17 7
aerobic respiration III (alternative oxidase pathway) 3 3 1
L-phenylalanine biosynthesis I 3 3 1
L-tyrosine biosynthesis I 3 3 1
(5Z)-dodecenoate biosynthesis I 6 5 2
pyruvate fermentation to butanol II (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
(5Z)-dodecenoate biosynthesis II 6 4 2
L-phenylalanine degradation II (anaerobic) 3 2 1
valproate β-oxidation 9 5 3
propanoate fermentation to 2-methylbutanoate 6 3 2
6-gingerol analog biosynthesis (engineered) 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
superpathway of fatty acid biosynthesis I (E. coli) 16 14 5
benzoyl-CoA degradation I (aerobic) 7 6 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
biotin biosynthesis I 15 13 4
streptorubin B biosynthesis 34 20 9
L-valine degradation I 8 6 2
aerobic respiration I (cytochrome c) 4 3 1
phytol degradation 4 3 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
fatty acid biosynthesis initiation (mitochondria) 4 2 1
phosphatidylcholine acyl editing 4 2 1
pyruvate fermentation to butanol I 8 3 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phenylacetate degradation I (aerobic) 9 8 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 5 2
sporopollenin precursors biosynthesis 18 4 4
L-tyrosine degradation I 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
superpathway of fatty acid biosynthesis initiation 5 4 1
octane oxidation 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
cis-vaccenate biosynthesis 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
3-phenylpropanoate degradation 10 5 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
superpathway of plastoquinol biosynthesis 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
superpathway of phenylethylamine degradation 11 9 2
even iso-branched-chain fatty acid biosynthesis 34 31 6
odd iso-branched-chain fatty acid biosynthesis 34 31 6
anteiso-branched-chain fatty acid biosynthesis 34 31 6
NAD(P)/NADPH interconversion 6 3 1
L-glutamate degradation VII (to butanoate) 12 5 2
petroselinate biosynthesis 6 2 1
Fe(II) oxidation 6 2 1
stearate biosynthesis I (animals) 6 1 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 7 2
glycerol degradation to butanol 16 10 2
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
2-methylpropene degradation 8 2 1
2-allylmalonyl-CoA biosynthesis 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 5 2
superpathway of aromatic amino acid biosynthesis 18 18 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
L-phenylalanine degradation IV (mammalian, via side chain) 9 4 1
toluene degradation VI (anaerobic) 18 4 2
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
L-histidine biosynthesis 10 10 1
methyl tert-butyl ether degradation 10 3 1
rosmarinic acid biosynthesis I 10 3 1
suberin monomers biosynthesis 20 3 2
gallate degradation III (anaerobic) 11 3 1
(S)-reticuline biosynthesis I 11 1 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 20 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of rosmarinic acid biosynthesis 14 4 1
superpathway of testosterone and androsterone degradation 28 7 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
cutin biosynthesis 16 1 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
mycolate biosynthesis 205 26 9
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1
superpathway of mycolate biosynthesis 239 27 9
anaerobic aromatic compound degradation (Thauera aromatica) 27 7 1
superpathway of chorismate metabolism 59 40 2
superpathway of histidine, purine, and pyrimidine biosynthesis 46 43 1