Culturing: Variovorax_OAS795_ML2, 96 deep-well microplate; 0.8 mL volume, Aerobic, at 30 (C), shaken=700 rpm
| Pathway | #Steps | #Present | #Specific |
| long-chain fatty acid activation | 1 | 1 | 1 |
| fatty acid β-oxidation III (unsaturated, odd number) | 1 | 1 | 1 |
| 3-(4-hydroxyphenyl)pyruvate biosynthesis | 1 | 1 | 1 |
| benzoyl-CoA biosynthesis | 3 | 3 | 2 |
| octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) | 12 | 12 | 6 |
| gondoate biosynthesis (anaerobic) | 4 | 4 | 2 |
| oleate β-oxidation (thioesterase-dependent, yeast) | 2 | 2 | 1 |
| NADH to cytochrome bo oxidase electron transfer I | 2 | 2 | 1 |
| fatty acid salvage | 6 | 5 | 3 |
| stearate biosynthesis II (bacteria and plants) | 6 | 5 | 3 |
| stearate biosynthesis IV | 6 | 4 | 3 |
| linoleate biosynthesis II (animals) | 2 | 1 | 1 |
| L-tyrosine degradation II | 2 | 1 | 1 |
| γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
| NADH to cytochrome bd oxidase electron transfer I | 2 | 1 | 1 |
| atromentin biosynthesis | 2 | 1 | 1 |
| oleate β-oxidation | 35 | 29 | 17 |
| palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 15 |
| palmitate biosynthesis III | 29 | 28 | 14 |
| palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) | 9 | 8 | 4 |
| superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 19 |
| tetradecanoate biosynthesis (mitochondria) | 25 | 23 | 11 |
| oleate biosynthesis IV (anaerobic) | 14 | 13 | 6 |
| fatty acid β-oxidation I (generic) | 7 | 5 | 3 |
| superpathway of fatty acids biosynthesis (E. coli) | 53 | 48 | 22 |
| fatty acid elongation -- saturated | 5 | 5 | 2 |
| adipate degradation | 5 | 5 | 2 |
| adipate biosynthesis | 5 | 5 | 2 |
| glutaryl-CoA degradation | 5 | 3 | 2 |
| fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 2 |
| fatty acid β-oxidation IV (unsaturated, even number) | 5 | 3 | 2 |
| fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) | 5 | 2 | 2 |
| 8-amino-7-oxononanoate biosynthesis I | 11 | 9 | 4 |
| pyruvate fermentation to hexanol (engineered) | 11 | 7 | 4 |
| (8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 4 |
| 2-methyl-branched fatty acid β-oxidation | 14 | 10 | 5 |
| superpathway of unsaturated fatty acids biosynthesis (E. coli) | 20 | 17 | 7 |
| L-phenylalanine biosynthesis I | 3 | 3 | 1 |
| aerobic respiration III (alternative oxidase pathway) | 3 | 3 | 1 |
| L-tyrosine biosynthesis I | 3 | 3 | 1 |
| (5Z)-dodecenoate biosynthesis I | 6 | 5 | 2 |
| L-isoleucine degradation I | 6 | 4 | 2 |
| pyruvate fermentation to butanol II (engineered) | 6 | 4 | 2 |
| (5Z)-dodecenoate biosynthesis II | 6 | 4 | 2 |
| L-phenylalanine degradation II (anaerobic) | 3 | 2 | 1 |
| valproate β-oxidation | 9 | 5 | 3 |
| propanoate fermentation to 2-methylbutanoate | 6 | 3 | 2 |
| 3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
| 6-gingerol analog biosynthesis (engineered) | 6 | 3 | 2 |
| methyl ketone biosynthesis (engineered) | 6 | 3 | 2 |
| L-tyrosine degradation IV (to 4-methylphenol) | 3 | 1 | 1 |
| oleate biosynthesis I (plants) | 3 | 1 | 1 |
| oleate β-oxidation (reductase-dependent, yeast) | 3 | 1 | 1 |
| alkane biosynthesis II | 3 | 1 | 1 |
| superpathway of fatty acid biosynthesis I (E. coli) | 16 | 14 | 5 |
| benzoyl-CoA degradation I (aerobic) | 7 | 6 | 2 |
| pyruvate fermentation to butanoate | 7 | 4 | 2 |
| fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 2 |
| biotin biosynthesis I | 15 | 13 | 4 |
| streptorubin B biosynthesis | 34 | 20 | 9 |
| L-valine degradation I | 8 | 6 | 2 |
| aerobic respiration I (cytochrome c) | 4 | 3 | 1 |
| phytol degradation | 4 | 3 | 1 |
| L-phenylalanine degradation III | 4 | 2 | 1 |
| L-tyrosine degradation III | 4 | 2 | 1 |
| phosphatidylcholine acyl editing | 4 | 2 | 1 |
| fatty acid biosynthesis initiation (mitochondria) | 4 | 2 | 1 |
| pyruvate fermentation to butanol I | 8 | 3 | 2 |
| oleate β-oxidation (isomerase-dependent, yeast) | 4 | 1 | 1 |
| wax esters biosynthesis II | 4 | 1 | 1 |
| long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
| phenylacetate degradation I (aerobic) | 9 | 8 | 2 |
| superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 6 | 2 |
| benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 5 | 2 |
| sporopollenin precursors biosynthesis | 18 | 4 | 4 |
| (R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 5 | 1 |
| L-tyrosine degradation I | 5 | 5 | 1 |
| 4-hydroxybenzoate biosynthesis III (plants) | 5 | 5 | 1 |
| cis-vaccenate biosynthesis | 5 | 4 | 1 |
| superpathway of fatty acid biosynthesis initiation | 5 | 4 | 1 |
| octane oxidation | 5 | 4 | 1 |
| 8-amino-7-oxononanoate biosynthesis IV | 5 | 4 | 1 |
| L-glutamate degradation V (via hydroxyglutarate) | 10 | 5 | 2 |
| 3-phenylpropanoate degradation | 10 | 5 | 2 |
| sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
| 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
| superpathway of plastoquinol biosynthesis | 5 | 2 | 1 |
| benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 2 | 1 |
| L-phenylalanine degradation VI (reductive Stickland reaction) | 5 | 1 | 1 |
| L-tyrosine degradation V (reductive Stickland reaction) | 5 | 1 | 1 |
| 4-hydroxybenzoate biosynthesis I (eukaryotes) | 5 | 1 | 1 |
| superpathway of phenylethylamine degradation | 11 | 9 | 2 |
| anteiso-branched-chain fatty acid biosynthesis | 34 | 31 | 6 |
| odd iso-branched-chain fatty acid biosynthesis | 34 | 31 | 6 |
| even iso-branched-chain fatty acid biosynthesis | 34 | 31 | 6 |
| NAD(P)/NADPH interconversion | 6 | 3 | 1 |
| L-glutamate degradation VII (to butanoate) | 12 | 5 | 2 |
| petroselinate biosynthesis | 6 | 2 | 1 |
| Fe(II) oxidation | 6 | 2 | 1 |
| stearate biosynthesis I (animals) | 6 | 1 | 1 |
| superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 5 | 2 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 2 |
| ceramide degradation by α-oxidation | 7 | 2 | 1 |
| icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
| icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
| capsaicin biosynthesis | 7 | 1 | 1 |
| arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
| Spodoptera littoralis pheromone biosynthesis | 22 | 4 | 3 |
| L-tryptophan degradation III (eukaryotic) | 15 | 7 | 2 |
| glycerol degradation to butanol | 16 | 10 | 2 |
| ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
| crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 4 | 2 |
| 2-methylpropene degradation | 8 | 2 | 1 |
| 2-allylmalonyl-CoA biosynthesis | 8 | 2 | 1 |
| superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 8 | 2 |
| benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 5 | 2 |
| superpathway of aromatic amino acid biosynthesis | 18 | 18 | 2 |
| 3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 11 | 2 |
| L-phenylalanine degradation IV (mammalian, via side chain) | 9 | 4 | 1 |
| toluene degradation VI (anaerobic) | 18 | 4 | 2 |
| L-histidine biosynthesis | 10 | 10 | 1 |
| superpathway of L-phenylalanine biosynthesis | 10 | 10 | 1 |
| superpathway of L-tyrosine biosynthesis | 10 | 10 | 1 |
| methyl tert-butyl ether degradation | 10 | 3 | 1 |
| rosmarinic acid biosynthesis I | 10 | 3 | 1 |
| suberin monomers biosynthesis | 20 | 3 | 2 |
| gallate degradation III (anaerobic) | 11 | 3 | 1 |
| (S)-reticuline biosynthesis I | 11 | 1 | 1 |
| 10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
| 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
| androstenedione degradation I (aerobic) | 25 | 6 | 2 |
| platensimycin biosynthesis | 26 | 6 | 2 |
| (4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
| 1-butanol autotrophic biosynthesis (engineered) | 27 | 20 | 2 |
| androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
| superpathway of rosmarinic acid biosynthesis | 14 | 4 | 1 |
| superpathway of testosterone and androsterone degradation | 28 | 7 | 2 |
| superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 3 |
| docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
| superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 9 | 3 |
| cutin biosynthesis | 16 | 1 | 1 |
| cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
| cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 3 | 1 |
| mycolate biosynthesis | 205 | 26 | 9 |
| superpathway of cholesterol degradation III (oxidase) | 49 | 5 | 2 |
| photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 21 | 1 |
| superpathway of mycolate biosynthesis | 239 | 27 | 9 |
| anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 7 | 1 |
| superpathway of chorismate metabolism | 59 | 40 | 2 |
| superpathway of histidine, purine, and pyrimidine biosynthesis | 46 | 43 | 1 |