Experiment set1IT060 for Pseudomonas sp. RS175

Compare to:

Inosine carbon 10 mM

Group: carbon source
Media: MME_noCarbon + Inosine (10 mM), pH=7
Culturing: Pseudomonas_RS175_ML2, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=1200 rpm
By: Joshua Elmore on 1-Jul-22
Media components: 9.1 mM Potassium phosphate dibasic trihydrate, 20 mM 3-(N-morpholino)propanesulfonic acid, 4.3 mM Sodium Chloride, 10 mM Ammonium chloride, 0.41 mM Magnesium Sulfate Heptahydrate, 0.07 mM Calcium chloride dihydrate, MME Trace Minerals (0.5 mg/L EDTA tetrasodium tetrahydrate salt, 2 mg/L Ferric chloride, 0.05 mg/L Boric Acid, 0.05 mg/L Zinc chloride, 0.03 mg/L copper (II) chloride dihydrate, 0.05 mg/L Manganese (II) chloride tetrahydrate, 0.05 mg/L Diammonium molybdate, 0.05 mg/L Cobalt chloride hexahydrate, 0.05 mg/L Nickel (II) chloride hexahydrate)

Specific Phenotypes

For 24 genes in this experiment

For carbon source Inosine in Pseudomonas sp. RS175

For carbon source Inosine across organisms

SEED Subsystems

Subsystem #Specific
Purine Utilization 3
Terminal cytochrome C oxidases 3
DNA repair, bacterial MutL-MutS system 2
Purine conversions 2
Allantoin Utilization 1
Coenzyme A Biosynthesis 1
DNA-replication 1
Fructose utilization 1
Mannitol Utilization 1
Photorespiration (oxidative C2 cycle) 1
Polyamine Metabolism 1
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 1
Transcription factors bacterial 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
β-alanine biosynthesis III 1 1 1
adenosine nucleotides degradation III 1 1 1
xanthine and xanthosine salvage 2 2 1
guanine and guanosine salvage I 2 2 1
guanine and guanosine salvage II 2 2 1
arsenite to oxygen electron transfer 2 1 1
adenosine nucleotides degradation II 5 5 2
superpathway of guanine and guanosine salvage 3 2 1
adenine salvage 3 2 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
adenine and adenosine salvage III 4 4 1
glycolate and glyoxylate degradation I 4 4 1
guanosine nucleotides degradation III 4 4 1
inosine 5'-phosphate degradation 4 4 1
guanosine nucleotides degradation II 4 4 1
adenosine nucleotides degradation I 8 7 2
aerobic respiration II (cytochrome c) (yeast) 4 3 1
spermidine biosynthesis II 4 3 1
guanosine nucleotides degradation I 4 3 1
D-fructuronate degradation 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
superpathway of polyamine biosynthesis III 8 5 2
mannitol cycle 5 4 1
purine nucleotides degradation II (aerobic) 11 11 2
purine nucleotides degradation I (plants) 12 10 2
superpathway of guanosine nucleotides degradation (plants) 6 5 1
purine nucleobases degradation II (anaerobic) 24 16 4
norspermidine biosynthesis 6 4 1
Fe(II) oxidation 6 3 1
superpathway of glycol metabolism and degradation 7 6 1
ureide biosynthesis 7 6 1
superpathway of β-D-glucuronosides degradation 7 4 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
superpathway of coenzyme A biosynthesis I (bacteria) 9 9 1
superpathway of purines degradation in plants 18 14 2
theophylline degradation 9 1 1
superpathway of hexuronide and hexuronate degradation 10 4 1
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
superpathway of purine nucleotide salvage 14 13 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 14 1