Experiment set1IT056 for Agrobacterium fabrum C58

Compare to:

Myristic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Myristic acid (2.5 mM)
Culturing: Agro_ML11, 24-well transparent microplate; Multitron, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 8/25/20
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 3 genes in this experiment

For carbon source Myristic acid in Agrobacterium fabrum C58

For carbon source Myristic acid across organisms

SEED Subsystems

Subsystem #Specific
Biotin biosynthesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
benzoyl-CoA biosynthesis 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
2-methyl-branched fatty acid β-oxidation 14 9 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
propanoyl-CoA degradation II 5 3 1
acrylate degradation I 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
fatty acid β-oxidation IV (unsaturated, even number) 5 2 1
octane oxidation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
β-alanine biosynthesis II 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
fatty acid β-oxidation I (generic) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
L-valine degradation I 8 5 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
oleate β-oxidation 35 27 4
valproate β-oxidation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
phenylacetate degradation I (aerobic) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 7 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of phenylethylamine degradation 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
platensimycin biosynthesis 26 6 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
palmitate biosynthesis III 29 28 1