Experiment set1IT045 for Echinicola vietnamensis KMM 6221, DSM 17526

Compare to:

marine broth with Polymyxin B sulfate 1 mg/ml

Group: stress
Media: marine_broth_2216 + Polymyxin B sulfate (1 mg/ml)
Culturing: Cola_ML5, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
Growth: about 5.2 generations
By: Adam on 29-Mar-17
Media components: 5 g/L Bacto Peptone, 1 g/L Yeast Extract, 0.1 g/L Ferric citrate, 19.45 g/L Sodium Chloride, 5.9 g/L Magnesium chloride hexahydrate, 3.24 g/L Magnesium sulfate, 1.8 g/L Calcium chloride, 0.55 g/L Potassium Chloride, 0.16 g/L Sodium bicarbonate, 0.08 g/L Potassium bromide, 34 mg/L Strontium chloride, 22 mg/L Boric Acid, 4 mg/L Sodium metasilicate, 2.4 mg/L sodium fluoride, 8 mg/L Disodium phosphate
Growth plate: 1729 D3

Specific Phenotypes

For 50 genes in this experiment

For stress Polymyxin B sulfate in Echinicola vietnamensis KMM 6221, DSM 17526

For stress Polymyxin B sulfate across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
DNA repair, bacterial MutL-MutS system 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
LMPTP YfkJ cluster 1
Multidrug Resistance Efflux Pumps 1
Polyhydroxybutyrate metabolism 1
Sialic Acid Metabolism 1
Streptococcal Mga Regulon 1
Ton and Tol transport systems 1
Two-component regulatory systems in Campylobacter 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation II (plant peroxisome) 5 4 2
adipate degradation 5 4 2
adipate biosynthesis 5 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 4
2-methyl-branched fatty acid β-oxidation 14 9 5
valproate β-oxidation 9 6 3
methyl ketone biosynthesis (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
propanoate fermentation to 2-methylbutanoate 6 3 2
oleate β-oxidation 35 27 11
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
fatty acid β-oxidation I (generic) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
gondoate biosynthesis (anaerobic) 4 4 1
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 9 3
fatty acid biosynthesis initiation (mitochondria) 4 3 1
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 2 2
oleate biosynthesis IV (anaerobic) 14 13 3
palmitate biosynthesis III 29 21 6
superpathway of fatty acid biosynthesis initiation 5 5 1
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 17 4
cis-vaccenate biosynthesis 5 4 1
fatty acid elongation -- saturated 5 4 1
glutaryl-CoA degradation 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 2 1
3-phenylpropanoate degradation 10 3 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
fatty acid β-oxidation IV (unsaturated, even number) 5 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 6
superpathway of fatty acids biosynthesis (E. coli) 53 48 10
superpathway of fatty acid biosynthesis I (E. coli) 16 14 3
8-amino-7-oxononanoate biosynthesis I 11 9 2
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of phenylethylamine degradation 11 2 2
fatty acid salvage 6 5 1
(5Z)-dodecenoate biosynthesis I 6 5 1
pyruvate fermentation to butanol II (engineered) 6 5 1
(5Z)-dodecenoate biosynthesis II 6 4 1
petroselinate biosynthesis 6 3 1
6-gingerol analog biosynthesis (engineered) 6 2 1
odd iso-branched-chain fatty acid biosynthesis 34 24 5
even iso-branched-chain fatty acid biosynthesis 34 24 5
anteiso-branched-chain fatty acid biosynthesis 34 24 5
superpathway of glyoxylate cycle and fatty acid degradation 14 10 2
pyruvate fermentation to butanoate 7 4 1
superpathway of fatty acid biosynthesis II (plant) 43 38 6
Spodoptera littoralis pheromone biosynthesis 22 3 3
biotin biosynthesis I 15 13 2
pyruvate fermentation to butanol I 8 6 1
L-valine degradation I 8 3 1
2-methylpropene degradation 8 2 1
streptorubin B biosynthesis 34 20 4
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
methyl tert-butyl ether degradation 10 2 1
L-glutamate degradation VII (to butanoate) 12 4 1
androstenedione degradation I (aerobic) 25 6 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 1
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 3 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
L-tryptophan degradation III (eukaryotic) 15 7 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
glycerol degradation to butanol 16 12 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 1
toluene degradation VI (anaerobic) 18 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
1-butanol autotrophic biosynthesis (engineered) 27 20 1
mycolate biosynthesis 205 23 1
superpathway of mycolate biosynthesis 239 24 1