Experiment set1IT022 for Pseudomonas syringae pv. syringae B728a ΔmexB

Compare to:

KB with Erythromycin 6.25 ug/ml

Group: stress
Media: KB + Erythromycin (6.25 ug/ml)
Culturing: SyringaeB728a_mexBdelta_ML3, 24 well microplate, Aerobic, at 28 (C), shaken=250 rpm
By: Tyler on 12/4/17
Media components: 10 g/L Bacto Peptone, 1.5 g/L Potassium phosphate dibasic, 15 g/L Glycerol, 0.6 g/L Magnesium sulfate

Specific Phenotypes

For 24 genes in this experiment

For stress Erythromycin in Pseudomonas syringae pv. syringae B728a ΔmexB

For stress Erythromycin across organisms

SEED Subsystems

Subsystem #Specific
Arginine and Ornithine Degradation 2
Polyamine Metabolism 2
ATP-dependent RNA helicases, bacterial 1
Acid resistance mechanisms 1
Auxin degradation 1
Biogenesis of cytochrome c oxidases 1
CBSS-262719.3.peg.410 1
Glycine and Serine Utilization 1
Lipid A modifications 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Orphan regulatory proteins 1
Oxidative stress 1
Peptidoglycan Biosynthesis 1
Photorespiration (oxidative C2 cycle) 1
Pyruvate Alanine Serine Interconversions 1
Transport of Iron 1
Type IV pilus 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
betanidin degradation 1 1 1
arginine dependent acid resistance 1 1 1
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 3 2
D-serine degradation 3 3 2
putrescine biosynthesis II 3 3 2
L-cysteine degradation II 3 2 2
L-tryptophan degradation II (via pyruvate) 3 2 2
GDP-mannose biosynthesis 4 4 2
superoxide radicals degradation 2 2 1
pseudouridine degradation 2 1 1
D-mannose degradation II 2 1 1
putrescine biosynthesis I 2 1 1
baicalein degradation (hydrogen peroxide detoxification) 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
L-arginine degradation III (arginine decarboxylase/agmatinase pathway) 2 1 1
D-mannose degradation I 2 1 1
glycine betaine degradation III 7 7 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 6 3
glycine degradation 3 3 1
ethanol degradation IV 3 3 1
L-methionine biosynthesis II 6 5 2
β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation 3 2 1
mannitol biosynthesis 3 1 1
reactive oxygen species degradation 4 4 1
superpathway of polyamine biosynthesis II 8 7 2
superpathway of putrescine biosynthesis 4 3 1
L-mimosine degradation 8 4 2
mannitol degradation II 4 2 1
spermidine biosynthesis III 4 2 1
glutathione-mediated detoxification I 8 3 2
luteolin triglucuronide degradation 4 1 1
xanthommatin biosynthesis 4 1 1
1,5-anhydrofructose degradation 5 2 1
colanic acid building blocks biosynthesis 11 9 2
superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis 14 7 2
β-(1,4)-mannan degradation 7 2 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
superpathway of polyamine biosynthesis I 8 7 1
purine nucleobases degradation II (anaerobic) 24 16 3
sesamin biosynthesis 8 1 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
peptidoglycan recycling II 10 8 1
justicidin B biosynthesis 10 1 1
matairesinol biosynthesis 10 1 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 5 1
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 1
superpathway of L-arginine and L-ornithine degradation 13 7 1
peptidoglycan recycling I 14 10 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
superpathway of arginine and polyamine biosynthesis 17 16 1