Experiment set1IT018 for Pseudomonas syringae pv. syringae B728a ΔmexB

Compare to:

KB with Carbenicillin disodium salt 3.1 ug/ml

Group: stress
Media: KB + Carbenicillin disodium salt (3.1 ug/ml)
Culturing: SyringaeB728a_mexBdelta_ML3, 24 well microplate, Aerobic, at 28 (C), shaken=250 rpm
By: Tyler on 12/4/17
Media components: 10 g/L Bacto Peptone, 1.5 g/L Potassium phosphate dibasic, 15 g/L Glycerol, 0.6 g/L Magnesium sulfate

Specific Phenotypes

For 26 genes in this experiment

For stress Carbenicillin disodium salt in Pseudomonas syringae pv. syringae B728a ΔmexB

For stress Carbenicillin disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Peptidoglycan Biosynthesis 3
Beta-lactamase 2
Type IV pilus 2
Acid resistance mechanisms 1
Arginine and Ornithine Degradation 1
Lysine degradation 1
Polyamine Metabolism 1
Proline, 4-hydroxyproline uptake and utilization 1
Protein degradation 1
Proteolysis in bacteria, ATP-dependent 1
Pyrimidine utilization 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Ribosome biogenesis bacterial 1
Serine-glyoxylate cycle 1
Tn552 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
arginine dependent acid resistance 1 1 1
L-arginine degradation III (arginine decarboxylase/agmatinase pathway) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
pseudouridine degradation 2 1 1
putrescine biosynthesis I 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
ketolysis 3 3 1
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 3 1
benzoyl-CoA biosynthesis 3 3 1
putrescine biosynthesis II 3 3 1
polyhydroxybutanoate biosynthesis 3 1 1
superpathway of putrescine biosynthesis 4 3 1
spermidine biosynthesis III 4 2 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 3
(2S)-ethylmalonyl-CoA biosynthesis 4 1 1
oleate β-oxidation 35 30 8
valproate β-oxidation 9 6 2
2-methyl-branched fatty acid β-oxidation 14 9 3
peptidoglycan recycling II 10 8 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
ketogenesis 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
pyruvate fermentation to acetone 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
peptidoglycan biosynthesis II (staphylococci) 17 12 3
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 3
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
peptidoglycan recycling I 14 10 2
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 3 1
pyruvate fermentation to butanoate 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
superpathway of polyamine biosynthesis II 8 7 1
superpathway of polyamine biosynthesis I 8 7 1
2-deoxy-D-ribose degradation II 8 6 1
pyruvate fermentation to butanol I 8 4 1
2-methylpropene degradation 8 2 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 7 3
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 5 1
ethylmalonyl-CoA pathway 11 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
gluconeogenesis I 13 13 1
superpathway of L-arginine and L-ornithine degradation 13 7 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 11 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of arginine and polyamine biosynthesis 17 16 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 17 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1