Experiment set16IT017 for Pseudomonas putida KT2440

Compare to:

L-Valine carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + L-Valine (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 5.6 generations
By: Mitchell Thompson on 9/5/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 18 genes in this experiment

For carbon source L-Valine in Pseudomonas putida KT2440

For carbon source L-Valine across organisms

SEED Subsystems

Subsystem #Specific
Valine degradation 8
Isoleucine degradation 5
Leucine Degradation and HMG-CoA Metabolism 5
Isobutyryl-CoA to Propionyl-CoA Module 3
Branched-Chain Amino Acid Biosynthesis 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
HMG CoA Synthesis 1
Serine-glyoxylate cycle 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 3 3
L-methionine degradation II 3 3 2
β-alanine degradation II 2 2 1
L-valine degradation I 8 6 4
L-threonine degradation I 6 4 3
β-alanine degradation I 2 1 1
L-threonine degradation V 2 1 1
L-isoleucine biosynthesis I (from threonine) 7 7 3
propanoyl-CoA degradation II 5 3 2
benzoyl-CoA biosynthesis 3 3 1
2-oxoglutarate decarboxylation to succinyl-CoA 3 3 1
glycine cleavage 3 3 1
pyruvate decarboxylation to acetyl CoA I 3 3 1
glycine biosynthesis II 3 3 1
L-leucine degradation I 6 5 2
2-methyl-branched fatty acid β-oxidation 14 10 4
superpathway of L-isoleucine biosynthesis I 13 13 3
valproate β-oxidation 9 7 2
hypoglycin biosynthesis 14 4 3
adipate degradation 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
acrylate degradation I 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
superpathway of branched chain amino acid biosynthesis 17 17 3
L-isoleucine degradation I 6 5 1
β-alanine biosynthesis II 6 5 1
superpathway of L-threonine metabolism 18 12 3
propanoate fermentation to 2-methylbutanoate 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
myo-inositol degradation I 7 1 1
2,4-dinitrotoluene degradation 7 1 1
phenylacetate degradation I (aerobic) 9 9 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
3-phenylpropanoate degradation 10 4 1
myo-, chiro- and scyllo-inositol degradation 10 1 1
superpathway of phenylethylamine degradation 11 11 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 30 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
cyclosporin A biosynthesis 15 2 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 1
platensimycin biosynthesis 26 6 1