Experiment set16IT005 for Pseudomonas putida KT2440

Compare to:

Butanol carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Butanol (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 2.4 generations
By: Mitchell Thompson on 9/5/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 8 genes in this experiment

For carbon source Butanol in Pseudomonas putida KT2440

For carbon source Butanol across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Polyhydroxybutyrate metabolism 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetoacetate degradation (to acetyl CoA) 2 1 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
oleate β-oxidation 35 30 12
fatty acid salvage 6 6 2
ketolysis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
pyruvate fermentation to butanol II (engineered) 6 4 2
polyhydroxybutanoate biosynthesis 3 2 1
4-oxopentanoate degradation 9 5 3
2-methyl-branched fatty acid β-oxidation 14 10 4
pyruvate fermentation to butanoate 7 3 2
pyruvate fermentation to hexanol (engineered) 11 8 3
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
pyruvate fermentation to butanol I 8 3 2
2-methylpropene degradation 8 2 2
valproate β-oxidation 9 7 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
adipate degradation 5 5 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
methyl tert-butyl ether degradation 10 2 2
pyruvate fermentation to acetone 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
4-ethylphenol degradation (anaerobic) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 3 2
glycerol degradation to butanol 16 9 2
2-deoxy-D-ribose degradation II 8 4 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
toluene degradation VI (anaerobic) 18 4 2
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
cannabinoid biosynthesis 13 6 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1